Enhancement of Thermoelectric Performance in Na-Doped Pb0.6Sn0.4Te0.95-xSexS0.05 via Breaking the Inversion Symmetry, Band Convergence, and Nanostructuring by Multiple Elements Doping

Dianta Ginting, Chan Chieh Lin, Lydia Rathnam, Gareoung Kim, Jae Hyun Yun, Hyeon Seob So, Hosun Lee, Byung Kyu Yu, Sung Jin Kim, Kyunghan Ahn, Jong Soo Rhyee

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Topological insulators have attracted much interest in topological states of matter featuring unusual electrical conduction behaviors. It has been recently reported that a topological crystalline insulator could exhibit a high thermoelectric performance by breaking its crystal symmetry via chemical doping. Here, we investigate the multiple effects of Na, Se, and S alloying on thermoelectric properties of a topological crystalline insulator Pb0.6Sn0.4Te. The Na doping is known to be effective for breaking the crystalline mirror symmetry of Pb0.6Sn0.4Te. We demonstrate that simultaneous emergence of band convergence by Se alloying and nanostructuring by S doping enhance the power factor and decrease lattice thermal conductivity, respectively. Remarkably, the high power factor of 22.3 μW cm-1 K-2 at 800 K is achieved for Na 1%-doped Pb0.6Sn0.4Te0.90Se0.05S0.05 mainly due to a relatively high Seebeck coefficient via band convergence by Se alloying as well as the suppression of bipolar conduction at high temperatures by the increase of energy band gap. Furthermore, the lattice thermal conductivity is significantly suppressed by PbS nanoprecipitates without deteriorating the hole carrier mobility, ranging from 0.80 W m-1 K-1 for Pb0.6Sn0.4Te to 0.17 W m-1 K-1 at 300 K for Pb0.6Sn0.4Te0.85Se0.10S0.05. As a result, the synergistically combined effects of breaking the crystalline mirror symmetry of topological crystalline insulator, band convergence, and nanostructuring for Pb0.6Sn0.4Te0.95-xSexS0.05 (x = 0, 0.05, 0.1, 0.2, and 0.95) give rise to an impressively high ZT of 1.59 at 800 K for x = 0.05. We suggest that the multiple doping in topological crystalline insulators is effective for improving the thermoelectric performance.

Original languageEnglish
Pages (from-to)11613-11622
Number of pages10
JournalACS Applied Materials and Interfaces
Volume10
Issue number14
DOIs
StatePublished - 11 Apr 2018

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

Keywords

  • ZT
  • nanostructure
  • power factor
  • thermal conductivity
  • thermoelectric
  • topological crystalline insulator

Fingerprint

Dive into the research topics of 'Enhancement of Thermoelectric Performance in Na-Doped Pb0.6Sn0.4Te0.95-xSexS0.05 via Breaking the Inversion Symmetry, Band Convergence, and Nanostructuring by Multiple Elements Doping'. Together they form a unique fingerprint.

Cite this