Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell

Sungjun Koh, Hyeonjun Lee, Taemin Lee, Kyoungwon Park, Woo Jae Kim, Doh C. Lee

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Colloidal InP quantum dots (QDs) have attracted a surge of interest as environmentally friendly light-emitters in downconversion liquid crystal displays and light-emitting diodes (LEDs). A ZnS shell on InP-based core QDs has helped achieve high photoluminescence (PL) quantum yield (QY) and stability. Yet, due to the difficulty in the growth of a thick ZnS shell without crystalline defects, InP-based core/shell QDs show inferior stability against QY drop compared to Cd chalcogenide precedents, e.g., CdSe/CdS core/thick-shell QDs. In this work, we demonstrate the synthesis of InP-based core/shell QDs coated with an Al-doped ZnS outer shell. QDs with an Al-doped shell exhibit remarkable improvement in thermal and air stability even when the shell thickness is below 2 nm, while the absorption and PL spectra, size, and crystal structure are nearly the same as the case of QDs with a pristine ZnS shell. X-ray photoelectron spectroscopy reveals that Al3+ in Al-doped QDs forms an Al-oxide layer at elevated temperature under ambient atmosphere. The as-formed Al-oxide layer blocks the access of external oxidative species penetrating into QDs and prevents QDs from oxidative degradation. We also trace the chemical pathway of the incorporation of Al3+ into ZnS lattice during the shell growth. Furthermore, we fabricate QD-LEDs using Al-doped and undoped QDs and compare the optoelectronic characteristics and stability.

Original languageEnglish
Article number144704
JournalJournal of Chemical Physics
Volume151
Issue number14
DOIs
StatePublished - 14 Oct 2019

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation (NRF) grants funded by the Korean Government (Grant Nos. NRF-2017R1A2B2011066 and NRF-2016M3A7B4910618) and by the Industrial Strategic Technology Development Program No. 10077471 “Development of core technology for highly efficient and stable, non-cadmium QLED materials” funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Publisher Copyright:
© 2019 Author(s).

Fingerprint

Dive into the research topics of 'Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell'. Together they form a unique fingerprint.

Cite this