Abstract
A crystalline supramolecular photocatalyst is prepared through metal-induced self-assembly of perylene diimide with imidazole groups at the imide position (PDI-Hm). Exploiting the metal-coordination ability of imidazole, a crystalline assembly of copper-coordinated PDI-Hm (CuPDI-Hm) in a nanorod shape is prepared which displays an outstanding photocatalytic oxygen evolution rate of 25,900 μmol g−1 h−1 without additional co-catalysts. The imidazole-copper coordination, along with π–π stacking of PDI frameworks, guides the arrangement of PDI-Hm molecules to form highly crystalline assemblies. The coordination of copper also modulates the size of the CuPDI-Hm supramolecular assembly by regulating the nucleation and growth processes. Furthermore, the imidazole-copper coordination constructs the electric field within the PDI-Hm assembly, hindering the recombination of photo-induced charges to enhance the photoelectric/photocatalytic activity when compared to Cu-free PDI-Hm assemblies. Small CuPDI-Hm assembly exhibits higher photocatalytic activity due to their larger surface area and reduced light scattering. Together, the Cu-imidazole coordination presents a facile way for fabricating size-controlled crystalline PDI assemblies with built-in electric field enhancing photoelectric and photocatalytic activities substantially.
Original language | English |
---|---|
Article number | e202301044 |
Journal | ChemSusChem |
Volume | 17 |
Issue number | 7 |
DOIs | |
State | Published - 8 Apr 2024 |
Bibliographical note
Publisher Copyright:© 2023 Wiley-VCH GmbH.
Keywords
- copper
- imidazole
- oxygen evolution
- perylene diimide
- photocatalyst