Abstract
The integration of transition metal dichalcogenide (TMDC) layers on nanostructures has attracted growing attention as a means to improve the physical properties of the ultrathin TMDC materials. In this work, the influence of SiO2nanopillars (NPs) with a height of 50 nm on the optical characteristics of MoS2layers is investigated. Using a metal organic chemical vapor deposition technique, a few layers of MoS2were conformally grown on the NP-patterned SiO2/Si substrates without notable strain. The photoluminescence and Raman intensities of the MoS2layers on the SiO2NPs were larger than those observed from a flat SiO2surface. For 100 nm-SiO2/Si wafers, the 50 nm-NP patterning enabled improved absorption in the MoS2layers over the whole visible wavelength range. Optical simulations showed that a strong electric-field could be formed at the NP surface, which led to the enhanced absorption in the MoS2layers. These results suggest a versatile strategy to realize high-efficiency TMDC-based optoelectronic devices.
Original language | English |
---|---|
Pages (from-to) | 710-715 |
Number of pages | 6 |
Journal | Nanoscale Advances |
Volume | 3 |
Issue number | 3 |
DOIs | |
State | Published - 7 Feb 2021 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry 2021.