Enhanced guided bone regeneration by controlled tetracycline release from poly(L-lactide) barrier membranes

Yoon Jeong Park, Yong Moo Lee, Si Nae Park, Ju Yeon Lee, Young Ku, Chong Pyoung Chung, Seung Jin Lee

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

With the aim of providing effective periodontal therapeutic modality, drug-releasing membranes for guided tissue regeneration (GTR) were developed. As GTR membranes, biodegradable barrier membranes composed of porous poly(L- lactide) (PLLA) films cast on poly(glycolide) (PGA) meshes were fabricated using an in-air drying phase inversion technique. PLLA was dissolved in methylene chloride-ethylacetate mixtures, cast on knitted PGA mesh, and then air-dried. Tetracycline, which is used in periodontal therapy because of its antibacterial activity and tissue regenerating effects, including osteoblast chemotactic effect and anti-collagenolytic activity, was incorporated into the membranes by adding it to PLLA solutions. The guided bone regenerating potential of tetracycline-loaded membranes was evaluated using release kinetics both in vitro and in vivo, biodegradation tests, and cell attachment tests. Homogeneous pores were generated both at the surface and in a sublayer of the membranes. The release kinetics of tetracycline depended mainly upon the hydrophilicity of tetracycline and the porosity of the membrane. The release rate further could be controlled by loaded drug contents. The release of tetracycline was appropriate for maintaining antimicrobial activity and for its tissue-regenerating potential. The membranes retained a proper degradation property, maintaining their mechanical integrity for the barrier function-for 4 weeks. Tetracycline-loaded membranes induced increased cell attachment levels compared with those of unloaded membranes. Tetracycline- loaded membranes markedly increased new bone formation in rat calvarial defects and induced bony reunion after 2 weeks of implantation. These results suggest that tetracycline-loaded ELLA membranes potentially enhance guided tissue regenerative efficacy. (C) 2000 John Wiley and Sons, Inc.

Original languageEnglish
Pages (from-to)391-397
Number of pages7
JournalJournal of Biomedical Materials Research
Volume51
Issue number3
DOIs
StatePublished - 5 Sep 2000

Keywords

  • Cellular adaptability
  • Controlled release
  • Guided tissue regeneration
  • Poly(L-lactide) membranes
  • Porosity
  • Tetracycline

Fingerprint

Dive into the research topics of 'Enhanced guided bone regeneration by controlled tetracycline release from poly(L-lactide) barrier membranes'. Together they form a unique fingerprint.

Cite this