Enhanced carrier transport over grain boundaries in lead-free CH3NH3Sn(I1-xBr x)3 (0 ≤ x ≤ 1) perovskite solar cells

Bich Phuong Nguyen, Hye Ri Jung, Juran Kim, William Jo

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

This paper reports on grain boundary (GB) roles in lead-free tin halide perovskite thin films. Nano scale spatial mapping of charge separation efficiency in methylammonium tin halide (MASn(I1-xBr x )3, MA = CH3NH3) thin films were constructed by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM). We observed downward band bending at GBs under dark conditions and higher surface photovoltage along the GBs, confirmed by C-AFM which showed high local current flows along the GBs. The band bending degree and local current intensity were affected by the Br/I ratio. Photo-generated carriers were more effectively separated and collected at GBs with increased Br content, and hysteresis was observed in Br-rich Sn-halide perovskite.

Original languageEnglish
Article number314005
JournalNanotechnology
Volume30
Issue number31
DOIs
StatePublished - 8 May 2019

Bibliographical note

Funding Information:
Bich Phuong Nguyen Hye Ri Jung Juran Kim William Jo Bich Phuong Nguyen Hye Ri Jung Juran Kim William Jo Department of Physics and New & Renewable Energy Research Center (NREC), Ewha Womans University, Seoul 03760, Republic of Korea Bich Phuong Nguyen, Hye Ri Jung, Juran Kim and William Jo 2019-08-02 2019-05-08 08:09:32 cgi/release: Article released cgi/mmedia: Updated ToC/abstract link cgi/mmedia: Removed ToC/abstract link bin/incoming: New from .zip Ministry of Education and Science https://doi.org/10.13039/501100005992 NRF-2018R1A6A1A03025340 National Research Foundation, funded by the Ministry of Science, Technology, and ICT, Republic of Korea NRF-2018R1A2B2003607 yes This paper reports on grain boundary (GB) roles in lead-free tin halide perovskite thin films. Nano scale spatial mapping of charge separation efficiency in methylammonium tin halide (MASn(I 1− x Br x ) 3 , MA�=�CH 3 NH 3 ) thin films were constructed by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM). We observed downward band bending at GBs under dark conditions and higher surface photovoltage along the GBs, confirmed by C-AFM which showed high local current flows along the GBs. The band bending degree and local current intensity were affected by the Br/I ratio. Photo-generated carriers were more effectively separated and collected at GBs with increased Br content, and hysteresis was observed in Br-rich Sn-halide perovskite. � 2019 IOP Publishing Ltd [1] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W Y 2019 Prog. Photovolt., Res. Appl. 27 3–12 10.1002/pip.3102 Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W Y Prog. Photovolt., Res. Appl. 1062-7995 27 2019 3 12 [2] Liu X, Yan K, Tan D, Liang X, Zhang H and Huang W 2018 ACS Energy Lett. 3 2701–7 10.1021/acsenergylett.8b01588 Liu X, Yan K, Tan D, Liang X, Zhang H and Huang W ACS Energy Lett. 3 2018 2701 2707 [3] Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 12956–3008 10.1021/acs.chemrev.6b00136 Manser J S, Christians J A and Kamat P V Chem. Rev. 116 2016 12956 13008 [4] Feng J and Xiao B 2014 J. Phys. Chem. C 118 19655–60 10.1021/jp506498k Feng J and Xiao B J. Phys. Chem. 1932-7447 118 C 2014 19655 19660 [5] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019–38 10.1021/ic401215x Stoumpos C C, Malliakas C D and Kanatzidis M G Inorg. Chem. 52 2013 9019 9038 [6] Takahashi Y, Hasegawa H, Takahashi Y and Inabe T 2013 J. Solid State Chem. 205 39–43 10.1016/j.jssc.2013.07.008 Takahashi Y, Hasegawa H, Takahashi Y and Inabe T J. Solid State Chem. 205 2013 39 43 [7] Du H-J, Wang W-C and Zhu J-Z 2016 Chin. Phys. B 25 108802 10.1088/1674-1056/25/10/108802 Du H-J, Wang W-C and Zhu J-Z Chin. Phys. 1674-1056 25 B 10 108802 2016 [8] Noel N K et al 2014 Energy Environ. Sci. 7 3061–8 10.1039/C4EE01076K Noel N K et al Energy Environ. Sci. 7 2014 3061 3068 [9] Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G 2014 Nat. Photon. 8 489–94 10.1038/nphoton.2014.82 Hao F, Stoumpos C C, Cao D H, Chang R P H and Kanatzidis M G Nat. Photon. 8 2014 489 494 [10] Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P and Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445–52 10.1021/jacs.5b06658 Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P and Kanatzidis M G J. Am. Chem. Soc. 137 2015 11445 11452 [11] Song T B, Yokoyama T, Stoumpos C C, Logsdon J, Cao D H, Wasielewski M R, Aramaki S and Kanatzidis M G 2017 J. Am. Chem. Soc. 139 836–42 10.1021/jacs.6b10734 Song T B, Yokoyama T, Stoumpos C C, Logsdon J, Cao D H, Wasielewski M R, Aramaki S and Kanatzidis M G J. Am. Chem. Soc. 139 2017 836 842 [12] Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S and Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776–82 10.1021/acs.jpclett.6b00118 Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S and Kanatzidis M G J. Phys. Chem. Lett. 7 2016 776 782 [13] Scheller L P, Weizman M, Simon P, Fehr M and Nickel N H 2012 J. Appl. Phys. 112 063711 10.1063/1.4752268 Scheller L P, Weizman M, Simon P, Fehr M and Nickel N H J. Appl. Phys. 112 063711 2012 [14] Kim G Y, Jeong A R, Kim J R, Jo W, Son D-H, Kim D-H and Kang J-K 2014 Sol. Energy Mater. Sol. Cells 127 129–35 10.1016/j.solmat.2014.04.019 Kim G Y, Jeong A R, Kim J R, Jo W, Son D-H, Kim D-H and Kang J-K Sol. Energy Mater. Sol. Cells 0927-0248 127 2014 129 135 [15] Kim G Y, Oh S H, Nguyen B P, Jo W, Kim B J, Lee D G and Jung H S 2015 J. Phys. Chem. Lett. 6 2355–62 10.1021/acs.jpclett.5b00967 Kim G Y, Oh S H, Nguyen B P, Jo W, Kim B J, Lee D G and Jung H S J. Phys. Chem. Lett. 6 2015 2355 2362 [16] Jeong A R, Kim G Y, Jo W, Nam D H, Cheong H, Jo H J, Kim D H, Sung S J, Kang J K and Lee D H 2013 Adv. Nat. Sci.: Nanosci. Nanotechnol. 4 015007 10.1088/2043-6262/4/1/015007 Jeong A R, Kim G Y, Jo W, Nam D H, Cheong H, Jo H J, Kim D H, Sung S J, Kang J K and Lee D H Adv. Nat. Sci.: Nanosci. Nanotechnol. 2043-6262 4 1 015007 2013 [17] Jiang M, Wu J, Lan F, Tao Q, Gao D and Li G 2015 J. Mater. Chem. A 3 963–7 10.1039/C4TA05373G Jiang M, Wu J, Lan F, Tao Q, Gao D and Li G J. Mater. Chem. 3 A 2015 963 967 [18] Ono L K and Qi Y 2016 J. Phys. Chem. Lett. 7 4764–94 10.1021/acs.jpclett.6b01951 Ono L K and Qi Y J. Phys. Chem. Lett. 7 2016 4764 4794 [19] Yun J S, Ho-Baillie A, Huang S, Woo S H, Heo Y, Seidel J, Huang F, Cheng Y B and Green M A 2015 J. Phys. Chem. Lett. 6 875–80 10.1021/acs.jpclett.5b00182 Yun J S, Ho-Baillie A, Huang S, Woo S H, Heo Y, Seidel J, Huang F, Cheng Y B and Green M A J. Phys. Chem. Lett. 6 2015 875 880 [20] Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G and Cahen D 2014 Nano Lett. 14 1000–4 10.1021/nl404454h Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G and Cahen D Nano Lett. 14 2014 1000 1004 [21] Dymshits A, Henning A, Segev G, Rosenwaks Y and Etgar L 2015 Sci. Rep. 5 8704 10.1038/srep08704 Dymshits A, Henning A, Segev G, Rosenwaks Y and Etgar L Sci. Rep. 5 2015 8704 [22] Salado M, Kokal R K, Calio L, Kazim S, Deepa M and Ahmad S 2017 Phys. Chem. Chem. Phys. 19 22905–14 10.1039/C7CP03760K Salado M, Kokal R K, Calio L, Kazim S, Deepa M and Ahmad S Phys. Chem. Chem. Phys. 1463-9076 19 2017 22905 22914 [23] Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K and Zhao Y 2016 Nat. Commun. 7 12305 10.1038/ncomms12305 Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K and Zhao Y Nat. Commun. 7 2016 12305 [24] Garrett J L, Tennyson E M, Hu M, Huang J, Munday J N and Leite M S 2017 Nano Lett. 17 2554–60 10.1021/acs.nanolett.7b00289 Garrett J L, Tennyson E M, Hu M, Huang J, Munday J N and Leite M S Nano Lett. 17 2017 2554 2560 [25] Gupta S, Bendikov T, Hodes G and Cahen D 2016 ACS Energy Lett. 1 1028–33 10.1021/acsenergylett.6b00402 Gupta S, Bendikov T, Hodes G and Cahen D ACS Energy Lett. 1 2016 1028 1033 [26] Li W, Li J, Li J, Fan J, Mai Y and Wang L 2016 J. Mater. Chem. A 4 17104–10 10.1039/C6TA08332C Li W, Li J, Li J, Fan J, Mai Y and Wang L J. Mater. Chem. 4 A 2016 17104 17110 [27] Worhatch R J, Kim H, Swainson I P, Yonkeu A L and Billinge S J L 2008 Chem. Mater. 20 1272–7 10.1021/cm702668d Worhatch R J, Kim H, Swainson I P, Yonkeu A L and Billinge S J L Chem. Mater. 20 2008 1272 1277 [28] Sadewasser S and Glatzel T 2011 Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces (Berlin: Springer) Sadewasser S and Glatzel T Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces 2011 [29] Jung H R et al 2017 J. Phys. Chem. C 121 21930–4 10.1021/acs.jpcc.7b06765 Jung H R et al J. Phys. Chem. 1932-7447 121 C 2017 21930 21934 [30] Nguyen B P, Kim G Y, Jo W, Kim B J and Jung H S 2017 Nanotechnology 28 315402 10.1088/1361-6528/aa727e Nguyen B P, Kim G Y, Jo W, Kim B J and Jung H S Nanotechnology 0957-4484 28 31 315402 2017 [31] Iefanova A, Adhikari N, Dubey A, Khatiwada D and Qiao Q 2016 AIP Adv. 6 085312 10.1063/1.4961463 Iefanova A, Adhikari N, Dubey A, Khatiwada D and Qiao Q AIP Adv. 6 085312 2016 [32] Chiarella F, Ferro P, Licci F, Barra M, Biasiucci M, Cassinese A and Vaglio R 2006 Appl. Phys. A 86 89–93 10.1007/s00339-006-3733-7 Chiarella F, Ferro P, Licci F, Barra M, Biasiucci M, Cassinese A and Vaglio R Appl. Phys. 1432-0630 86 A 2006 89 93 [33] Sherkar T S, Momblona C, Gil-Escrig L, Avila J, Sessolo M, Bolink H J and Koster L J A 2017 ACS Energy Lett. 2 1214–22 10.1021/acsenergylett.7b00236 Sherkar T S, Momblona C, Gil-Escrig L, Avila J, Sessolo M, Bolink H J and Koster L J A ACS Energy Lett. 2 2017 1214 1222 [34] Xu J et al 2015 Nat. Commun. 6 7081 10.1038/ncomms8081 Xu J et al Nat. Commun. 6 2015 7081 [35] Li J-J, Ma J-Y, Ge Q-Q, Hu J-S, Wang D and Wan L-J 2015 ACS Appl. Mater. Interfaces 7 28518–23 10.1021/acsami.5b09801 Li J-J, Ma J-Y, Ge Q-Q, Hu J-S, Wang D and Wan L-J ACS Appl. Mater. Interfaces 7 2015 28518 28523 [36] Reid O G, Munechika K and Ginger D S 2008 Nano Lett. 8 1602–9 10.1021/nl080155l Reid O G, Munechika K and Ginger D S Nano Lett. 8 2008 1602 1609 [37] Yu Y, Zhao D, Grice C R, Meng W, Wang C, Liao W, Cimaroli A J, Zhang H, Zhu K and Yan Y 2016 RSC Adv. 6 90248–54 10.1039/C6RA19476A Yu Y, Zhao D, Grice C R, Meng W, Wang C, Liao W, Cimaroli A J, Zhang H, Zhu K and Yan Y RSC Adv. 6 2016 90248 90254 [38] Hasegawa H and Inabe T 2016 New J. Chem. 40 7043–7 10.1039/C6NJ00439C Hasegawa H and Inabe T New J. Chem. 1144-0546 40 2016 7043 7047 [39] Heo J H, Shin D H, Moon S H, Lee M H, Kim D H, Oh S H, Jo W and Im S H 2017 Sci. Rep. 7 16586 10.1038/s41598-017-16805-4 Heo J H, Shin D H, Moon S H, Lee M H, Kim D H, Oh S H, Jo W and Im S H Sci. Rep. 7 2017 16586 [40] Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819–22 10.1002/adma.201001872 Muenstermann R, Menke T, Dittmann R and Waser R Adv. Mater. 22 2010 4819 4822 [41] Braly I L and Hillhouse H W 2016 J. Phys. Chem. C 120 893–902 10.1021/acs.jpcc.5b10728 Braly I L and Hillhouse H W J. Phys. Chem. 1932-7447 120 C 2016 893 902 [42] Lee Y M, Park J, Yu B D, Hong S, Jung M-C and Nakamura M 2018 J. Phys. Chem. Lett. 9 2293–7 10.1021/acs.jpclett.8b00494 Lee Y M, Park J, Yu B D, Hong S, Jung M-C and Nakamura M J. Phys. Chem. Lett. 9 2018 2293 2297 [43] Brivio F, Caetano C and Walsh A 2016 J. Phys. Chem. Lett. 7 1083–7 10.1021/acs.jpclett.6b00226 Brivio F, Caetano C and Walsh A J. Phys. Chem. Lett. 7 2016 1083 1087 [44] Wang F, Ma J, Xie F, Li L, Chen J, Fan J and Zhao N 2016 Adv. Funct. Mater. 26 3417–23 10.1002/adfm.201505127 Wang F, Ma J, Xie F, Li L, Chen J, Fan J and Zhao N Adv. Funct. Mater. 26 2016 3417 3423

Publisher Copyright:
© 2019 IOP Publishing Ltd.

Keywords

  • band bending
  • charge separation and collection
  • grain boundary
  • grain size
  • tin-based perovskite

Fingerprint

Dive into the research topics of 'Enhanced carrier transport over grain boundaries in lead-free CH3NH3Sn(I1-xBr x)3 (0 ≤ x ≤ 1) perovskite solar cells'. Together they form a unique fingerprint.

Cite this