End of multifield inflation and the perturbation spectrum

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

We investigate the dynamics of inflation models driven by multiple, decoupled scalar fields and calculate the Hubble parameter and the amplitude of the lightest field at the end of inflation which may be responsible for interesting, or possibly dangerous cosmological consequences after inflation. The results are very simple and similar to those of the single field inflation, mainly depending on the underlying spectrum of the masses. The mass distribution is heavily constrained by the power spectrum of density perturbations P and the spectral index ns. The overall mass scale gives the amplitude of P, and ns is affected by the number of fields and the spacing between masses in the distribution. The dropout effect of the massive fields makes the perturbation spectrum typically redder than the single field inflation spectrum. We illustrate this using two different mass distributions.

Original languageEnglish
Article number043502
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume75
Issue number4
DOIs
StatePublished - 5 Feb 2007

Fingerprint

Dive into the research topics of 'End of multifield inflation and the perturbation spectrum'. Together they form a unique fingerprint.

Cite this