TY - JOUR
T1 - End of multifield inflation and the perturbation spectrum
AU - Gong, Jinn Ouk
PY - 2007/2/5
Y1 - 2007/2/5
N2 - We investigate the dynamics of inflation models driven by multiple, decoupled scalar fields and calculate the Hubble parameter and the amplitude of the lightest field at the end of inflation which may be responsible for interesting, or possibly dangerous cosmological consequences after inflation. The results are very simple and similar to those of the single field inflation, mainly depending on the underlying spectrum of the masses. The mass distribution is heavily constrained by the power spectrum of density perturbations P and the spectral index ns. The overall mass scale gives the amplitude of P, and ns is affected by the number of fields and the spacing between masses in the distribution. The dropout effect of the massive fields makes the perturbation spectrum typically redder than the single field inflation spectrum. We illustrate this using two different mass distributions.
AB - We investigate the dynamics of inflation models driven by multiple, decoupled scalar fields and calculate the Hubble parameter and the amplitude of the lightest field at the end of inflation which may be responsible for interesting, or possibly dangerous cosmological consequences after inflation. The results are very simple and similar to those of the single field inflation, mainly depending on the underlying spectrum of the masses. The mass distribution is heavily constrained by the power spectrum of density perturbations P and the spectral index ns. The overall mass scale gives the amplitude of P, and ns is affected by the number of fields and the spacing between masses in the distribution. The dropout effect of the massive fields makes the perturbation spectrum typically redder than the single field inflation spectrum. We illustrate this using two different mass distributions.
UR - http://www.scopus.com/inward/record.url?scp=33846823014&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.75.043502
DO - 10.1103/PhysRevD.75.043502
M3 - Article
AN - SCOPUS:33846823014
SN - 1550-7998
VL - 75
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 4
M1 - 043502
ER -