TY - JOUR
T1 - Electronic Structure and Reactivity of Mononuclear Nonheme Iron-Peroxo Complexes as a Biomimetic Model of Rieske Oxygenases
T2 - Ring Size Effects of Macrocyclic Ligands
AU - Zhu, Wenjuan
AU - Wu, Peng
AU - Larson, Virginia A.
AU - Kumar, Akhilesh
AU - Li, Xiao Xi
AU - Seo, Mi Sook
AU - Lee, Yong Min
AU - Wang, Binju
AU - Lehnert, Nicolai
AU - Nam, Wonwoo
N1 - Publisher Copyright:
© 2023 American Chemical Society
PY - 2024/1/10
Y1 - 2024/1/10
N2 - We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.
AB - We report the macrocyclic ring size-electronic structure-electrophilic reactivity correlation of mononuclear nonheme iron(III)-peroxo complexes bearing N-tetramethylated cyclam analogues (n-TMC), [FeIII(O2)(12-TMC)]+ (1), [FeIII(O2)(13-TMC)]+ (2), and [FeIII(O2)(14-TMC)]+ (3), as a model study of Rieske oxygenases. The Fe(III)-peroxo complexes show the same δ and pseudo-σ bonds between iron and the peroxo ligand. However, the strength of these interactions varies depending on the ring size of the n-TMC ligands; the overall Fe-O bond strength and the strength of the Fe-O2 δ bond increase gradually as the ring size of the n-TMC ligands becomes smaller, such as from 14-TMC to 13-TMC to 12-TMC. MCD spectroscopy plays a key role in assigning the characteristic low-energy δ → δ* LMCT band, which provides direct insight into the strength of the Fe-O2 δ bond and which, in turn, is correlated with the superoxo character of the iron-peroxo group. In oxidation reactions, reactivities of 1-3 toward hydrocarbon C-H bond activation are compared, revealing the reactivity order of 1 > 2 > 3; the [FeIII(O2)(n-TMC)]+ complex with a smaller n-TMC ring size, 12-TMC, is much more reactive than that with a larger n-TMC ring size, 14-TMC. DFT analysis shows that the Fe(III)-peroxo complex is not reactive toward C-H bonds, but it is the end-on Fe(II)-superoxo valence tautomer that is responsible for the observed reactivity. The hydrogen atom abstraction (HAA) reactivity of these intermediates is correlated with the overall donicity of the n-TMC ligand, which modulates the energy of the singly occupied π* superoxo frontier orbital that serves as the electron acceptor in the HAA reaction. The implications of these results for the mechanism of Rieske oxygenases are further discussed.
UR - http://www.scopus.com/inward/record.url?scp=85181556080&partnerID=8YFLogxK
U2 - 10.1021/jacs.3c08559
DO - 10.1021/jacs.3c08559
M3 - Article
C2 - 38147793
AN - SCOPUS:85181556080
SN - 0002-7863
VL - 146
SP - 250
EP - 262
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 1
ER -