Effects of plant and soil amendment on remediation performance and methane mitigation in petroleum-contaminated soil

Yoonjoo Seo, Kyung Suk Cho

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.

Original languageEnglish
Pages (from-to)104-114
Number of pages11
JournalJournal of Microbiology and Biotechnology
Volume31
Issue number1
DOIs
StatePublished - 28 Jan 2021

Bibliographical note

Funding Information:
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2006701).

Publisher Copyright:
Copyright © 2021 by The Korean Society for Microbiology and Biotechnology.

Keywords

  • Chemical nutrient
  • Compost
  • Methane emission
  • Petroleum-contaminated soil
  • Rhizoremediation

Fingerprint

Dive into the research topics of 'Effects of plant and soil amendment on remediation performance and methane mitigation in petroleum-contaminated soil'. Together they form a unique fingerprint.

Cite this