TY - JOUR
T1 - Effects of nitrate and sulfate on the performance and bacterial community structure of membraneless single-chamber air-cathode microbial fuel cell
AU - Seo, Yoonjoo
AU - Kang, Hyemin
AU - Chang, Sumin
AU - Lee, Yun Yeong
AU - Cho, Kyung Suk
N1 - Funding Information:
This work was supported by the Korea Foundation for the Advancement of Science & Creativity (KOFAC) as an Undergraduate Research Program (2201611260011), and funded by the Korean Government.
Publisher Copyright:
© 2018 Taylor … Francis Group, LLC.
PY - 2018/10/16
Y1 - 2018/10/16
N2 - Membrane-less, single-chamber, air-cathode, microbial fuel cells (ML-SC MFCs) have attracted attention as being suitable for wastewater treatment. In this study, the effects of nitrate and sulfate on the performance of ML-SC MFCs and their bacterial structures were evaluated. The maximum power density increased after nitrate addition from 8.6 mW m−2 to 14.0 mW m−2, while it decreased after sulfate addition from 11.5 mW m−2 to 7.7 mW m−2. The chemical oxygen demand removal efficiencies remained at more than 90% regardless of the nitrate or sulfate additions. The nitrate was removed completely (93.0%) in the ML-SC MFC, while the sulfate removal efficiency was relatively low (17.6%). Clostridium (23.1%), Petrimonas (20.0%), and unclassified Rhodocyclaceae (6.2%) were dominant on the anode before the addition of nitrate or sulfate. After the addition of nitrate, Clostridium was still the most dominant on the anode (23.6%), but Petrimonas significantly decreased (6.0%) and unclassified Rhodocyclaceae increased (17.1%). After the addition of sulfate, the amount of Clostridium almost doubled in the composition on the anode (43.2%), while Petrimonas decreased (5.5%). The bacterial community on the cathode was similar to that on the anode after the addition of nitrate. However, Desulfovibrio was remarkably dominant on the cathode (32.9%) after the addition of sulfate. These results promote a deeper understanding of the effects of nitrate or sulfate on the ML-SC MFCs’ performance and their bacterial community.
AB - Membrane-less, single-chamber, air-cathode, microbial fuel cells (ML-SC MFCs) have attracted attention as being suitable for wastewater treatment. In this study, the effects of nitrate and sulfate on the performance of ML-SC MFCs and their bacterial structures were evaluated. The maximum power density increased after nitrate addition from 8.6 mW m−2 to 14.0 mW m−2, while it decreased after sulfate addition from 11.5 mW m−2 to 7.7 mW m−2. The chemical oxygen demand removal efficiencies remained at more than 90% regardless of the nitrate or sulfate additions. The nitrate was removed completely (93.0%) in the ML-SC MFC, while the sulfate removal efficiency was relatively low (17.6%). Clostridium (23.1%), Petrimonas (20.0%), and unclassified Rhodocyclaceae (6.2%) were dominant on the anode before the addition of nitrate or sulfate. After the addition of nitrate, Clostridium was still the most dominant on the anode (23.6%), but Petrimonas significantly decreased (6.0%) and unclassified Rhodocyclaceae increased (17.1%). After the addition of sulfate, the amount of Clostridium almost doubled in the composition on the anode (43.2%), while Petrimonas decreased (5.5%). The bacterial community on the cathode was similar to that on the anode after the addition of nitrate. However, Desulfovibrio was remarkably dominant on the cathode (32.9%) after the addition of sulfate. These results promote a deeper understanding of the effects of nitrate or sulfate on the ML-SC MFCs’ performance and their bacterial community.
KW - Bacterial community
KW - Microbial fuel cells (MFCs)
KW - Nitrate removal
KW - Sulfate removal
KW - Wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85031504306&partnerID=8YFLogxK
U2 - 10.1080/10934529.2017.1366242
DO - 10.1080/10934529.2017.1366242
M3 - Article
C2 - 29035628
AN - SCOPUS:85031504306
SN - 1093-4529
VL - 53
SP - 13
EP - 24
JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
IS - 1
ER -