TY - JOUR
T1 - Effects of electromagnetic waves with LTE and 5G bandwidth on the skin pigmentation in vitro
AU - Kim, Kyuri
AU - Lee, Young Seung
AU - Kim, Nam
AU - Choi, Hyung Do
AU - Kang, Dong Jun
AU - Kim, Hak Rim
AU - Lim, Kyung Min
N1 - Funding Information:
This research was funded by the ICT R&D program of MSIT/IITP. [2019-0-00102. A Study on Public Health and Safety in a Complex EMF Environment].
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE-or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.
AB - With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE-or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.
KW - 5G
KW - Artificial human epidermis
KW - Electromagnetic waves
KW - LTE
KW - Melanogenesis
KW - Skin pigmentation
UR - http://www.scopus.com/inward/record.url?scp=85098751315&partnerID=8YFLogxK
U2 - 10.3390/ijms22010170
DO - 10.3390/ijms22010170
M3 - Article
C2 - 33375304
AN - SCOPUS:85098751315
SN - 1661-6596
VL - 22
SP - 1
EP - 13
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 1
M1 - 170
ER -