Effects of dicarbonyl trapping agents, antioxidants, and reducing agents on the formation of furan and other volatile components in canned-coffee model systems

Li Wei Zheng, Hyun Chung, Young Suk Kim

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

The formation of furan and certain volatiles related to furan formation mechanisms was studied using gas chromatography-mass spectrometry combined with solid-phase micro extraction after adding dicarbonyl trapping agents [epicatechin (EC), epigallocatechin gallate (EGCG), and catechin], water-soluble antioxidants (Trolox, caffeic acid, ferulic acid, and chlorogenic acid), fat-soluble antioxidants (α-tocopherol, BHT, and β-carotene), and reducing agents (glutathione and sodium sulfite) to canned-coffee model systems (CMS). The level of furan formation decreased significantly following the addition of EC (by 65.3%), EGCG (by 60.0%), and catechin (by 44.7%). In addition, the formation of Maillard reaction products, including furan derivatives (furfural and 5-methylfurfural), Strecker aldehyde (2-methylbutanal), pyrazines (2,6-dimethylpyrazine), and lipid oxidation products (including hexanal and 2-pentylfuran) was suppressed when any of the dicarbonyl trapping agents was added. Among the water-soluble antioxidants studied, chlorogenic acid most significantly decreased the furan level, by 67.0%, followed by ferulic acid (57.6%), Trolox (50.1%), and caffeic acid (48.2%) in the CMS. Chlorogenic acid also reduced the formation of furfural and lipid oxidation products. However, the addition of caffeic acid, ferulic acid, and chlorogenic acid decreased the generation of key coffee aroma components, such as Strecker aldehydes (2-methylpropanal and 2-methylbutanal), 5-methylfurfural, and pyrazines (2,6-dimethylpyrazine and 2-ethyl-5-methylpyrazine). Among the fat-soluble antioxidants, BHT and α-tocopherol decreased the furan level by 49.3% and 39.3%, respectively, while β-carotene increased the furan level by 34.8%. The addition of sodium sulfite and glutathione to CMS also led to considerable reductions in furan, of 64.1% and 44.9%, respectively.

Original languageEnglish
Pages (from-to)328-336
Number of pages9
JournalFood Research International
Volume75
DOIs
StatePublished - 1 Sep 2015

Keywords

  • Coffee
  • Furan
  • GC-MS
  • Lipid oxidation
  • Maillard reaction

Fingerprint

Dive into the research topics of 'Effects of dicarbonyl trapping agents, antioxidants, and reducing agents on the formation of furan and other volatile components in canned-coffee model systems'. Together they form a unique fingerprint.

Cite this