TY - JOUR
T1 - Effectiveness of simulation-based nursing eucation depending on fidelity
T2 - A meta analysis
AU - Kim, Junghee
AU - Park, Jin Hwa
AU - Shin, Sujin
N1 - Publisher Copyright:
© 2016 Kim et al.
PY - 2016
Y1 - 2016
N2 - Background: Simulation-based nursing education is an increasingly popular pedagogical approach. It provides students with opportunities to practice their clinical and decision-making skills through various real-life situational experiences. However, simulation approaches fall along a continuum ranging from low-fidelity to high-fidelity simulation. The purpose of this study was to determine the effect size of simulation-based educational interventions in nursing and compare effect sizes according to the fidelity level of the simulators through a meta-analysis. Method: This study explores the quantitative evidence published in the electronic databases EBSCO, Medline, ScienceDirect, ERIC, RISS, and the National Assembly Library of Korea database. Using a search strategy including the search terms "nursing," "simulation," "human patient," and "simulator," we identified 2279 potentially relevant articles. Forty studies met the inclusion criteria and were retained in the analysis. Results: This meta-analysis showed that simulation-based nursing education was effective in various learning domains, with a pooled random-effects standardized mean difference of 0.70. Subgroup analysis revealed that effect sizes were larger for high-fidelity simulation (0.86), medium-fidelity simulation (1.03), and standardized patients (0.86) than they were for low-fidelity and hybrid simulations. In terms of cognitive outcomes, the effect size was the largest for high-fidelity simulation (0.50). Regarding affective outcome, high-fidelity simulation (0.80) and standardized patients (0.73) had the largest effect sizes. Conclusions: These results suggest that simulation-based nursing educational interventions have strong educational effects, with particularly large effects in the psychomotor domain. Since the effect is not proportional to fidelity level, it is important to use a variety of educational interventions to meet all of the educational goals.
AB - Background: Simulation-based nursing education is an increasingly popular pedagogical approach. It provides students with opportunities to practice their clinical and decision-making skills through various real-life situational experiences. However, simulation approaches fall along a continuum ranging from low-fidelity to high-fidelity simulation. The purpose of this study was to determine the effect size of simulation-based educational interventions in nursing and compare effect sizes according to the fidelity level of the simulators through a meta-analysis. Method: This study explores the quantitative evidence published in the electronic databases EBSCO, Medline, ScienceDirect, ERIC, RISS, and the National Assembly Library of Korea database. Using a search strategy including the search terms "nursing," "simulation," "human patient," and "simulator," we identified 2279 potentially relevant articles. Forty studies met the inclusion criteria and were retained in the analysis. Results: This meta-analysis showed that simulation-based nursing education was effective in various learning domains, with a pooled random-effects standardized mean difference of 0.70. Subgroup analysis revealed that effect sizes were larger for high-fidelity simulation (0.86), medium-fidelity simulation (1.03), and standardized patients (0.86) than they were for low-fidelity and hybrid simulations. In terms of cognitive outcomes, the effect size was the largest for high-fidelity simulation (0.50). Regarding affective outcome, high-fidelity simulation (0.80) and standardized patients (0.73) had the largest effect sizes. Conclusions: These results suggest that simulation-based nursing educational interventions have strong educational effects, with particularly large effects in the psychomotor domain. Since the effect is not proportional to fidelity level, it is important to use a variety of educational interventions to meet all of the educational goals.
KW - Educational models
KW - Meta-analysis
KW - Nursing education
KW - Patient simulation
UR - http://www.scopus.com/inward/record.url?scp=85007552673&partnerID=8YFLogxK
U2 - 10.1186/s12909-016-0672-7
DO - 10.1186/s12909-016-0672-7
M3 - Article
C2 - 27215280
AN - SCOPUS:85007552673
SN - 1472-6920
VL - 16
JO - BMC Medical Education
JF - BMC Medical Education
IS - 1
M1 - 152
ER -