Effective theories of single field inflation when heavy fields matter

Ana Achúcarro, Jinn Ouk Gong, Sjoerd Hardeman, Gonzalo A. Palma, Subodh P. Patil

Research output: Contribution to journalArticlepeer-review

153 Scopus citations


We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbations. The resulting operator expansion is distinguishable from that of other scenarios, such as standard single inflation or DBI inflation. In particular, we re-derive how certain operators can become transiently strongly coupled along the inflaton trajectory, consistent with slow-roll and the validity of the EFT expansion, imprinting features in the primordial power spectrum, and we deduce the relevant cubic operators that imply distinct signatures in the primordial bispectrum which may soon be constrained by observations.

Original languageEnglish
Article number66
JournalJournal of High Energy Physics
Issue number5
StatePublished - May 2012


  • Cosmology of theories beyond the SM
  • Gauge symmetry
  • Space-time symmetries


Dive into the research topics of 'Effective theories of single field inflation when heavy fields matter'. Together they form a unique fingerprint.

Cite this