TY - JOUR
T1 - Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency
AU - Na, Jin Hee
AU - Lee, Seung Young
AU - Lee, Sangmin
AU - Koo, Heebeom
AU - Min, Kyung Hyun
AU - Jeong, Seo Young
AU - Yuk, Soon Hong
AU - Kim, Kwangmeyung
AU - Kwon, Ick Chan
PY - 2012/10/10
Y1 - 2012/10/10
N2 - To evaluate the tumor targeting efficiency of self-assembled polymeric nanoparticles, four glycol chitosan nanoparticles (CNPs) with different degrees of hydrophobic substitution were prepared by coupling 7.5, 12, 23, and 35 wt.% of 5β-cholanic acid to hydrophilic glycol chitosan polymer (GC). The sizes and zeta-potentials of different CNPs in aqueous condition were not significantly different, but their stability and deformability were greatly dependent upon the degree of substitution (DS) of 5β-cholanic acid. With an increase in hydrophobicity, CNPs became more stable and rigid, as characterized by SDS-PAGE and filtration tests. To compare with CNPs, linear GC and polystyrene nanoparticles (PSNPs) were employed as controls. In vivo tumor accumulation of Cy5.5-labeled linear GC, polystyrene nanoparticles (PSNPs) and CNPs were monitored in flank tumors and liver tumor-bearing mice models using near-infrared fluorescence (NIRF) imaging systems. CNPs displayed higher tumor accumulation than GC and PSNPs via the enhanced permeability and retention (EPR) effect. Interestingly, CNPs containing 23 wt.% of 5β-cholanic acid (CNP-23%) showed the highest tumor-targeting efficiency compared to other CNPs. As exemplified in this study, the stability of CNP-23% is better than CNP-7.5% and CNP-12% containing 7.5 wt.% and 12 wt.% of 5β-cholanic acid, respectively, and the deformability of CNP-23% is better than that of CNP-35% containing 35 wt.% of 5β-cholanic acid. We proposed that the superior tumor-targeting efficiency of CNP-23% is mainly due to their balanced stability and deformability in vivo. This study demonstrates that the degree of hydrophobic substitution of self-assembled nanoparticles could determine their stability and deformability. Importantly, they were founded to be the key factors which affect their tumor-targeting efficiency in vivo, and so that these factors should be highly considered during developing nanoparticles for tumor-targeted imaging or drug delivery.
AB - To evaluate the tumor targeting efficiency of self-assembled polymeric nanoparticles, four glycol chitosan nanoparticles (CNPs) with different degrees of hydrophobic substitution were prepared by coupling 7.5, 12, 23, and 35 wt.% of 5β-cholanic acid to hydrophilic glycol chitosan polymer (GC). The sizes and zeta-potentials of different CNPs in aqueous condition were not significantly different, but their stability and deformability were greatly dependent upon the degree of substitution (DS) of 5β-cholanic acid. With an increase in hydrophobicity, CNPs became more stable and rigid, as characterized by SDS-PAGE and filtration tests. To compare with CNPs, linear GC and polystyrene nanoparticles (PSNPs) were employed as controls. In vivo tumor accumulation of Cy5.5-labeled linear GC, polystyrene nanoparticles (PSNPs) and CNPs were monitored in flank tumors and liver tumor-bearing mice models using near-infrared fluorescence (NIRF) imaging systems. CNPs displayed higher tumor accumulation than GC and PSNPs via the enhanced permeability and retention (EPR) effect. Interestingly, CNPs containing 23 wt.% of 5β-cholanic acid (CNP-23%) showed the highest tumor-targeting efficiency compared to other CNPs. As exemplified in this study, the stability of CNP-23% is better than CNP-7.5% and CNP-12% containing 7.5 wt.% and 12 wt.% of 5β-cholanic acid, respectively, and the deformability of CNP-23% is better than that of CNP-35% containing 35 wt.% of 5β-cholanic acid. We proposed that the superior tumor-targeting efficiency of CNP-23% is mainly due to their balanced stability and deformability in vivo. This study demonstrates that the degree of hydrophobic substitution of self-assembled nanoparticles could determine their stability and deformability. Importantly, they were founded to be the key factors which affect their tumor-targeting efficiency in vivo, and so that these factors should be highly considered during developing nanoparticles for tumor-targeted imaging or drug delivery.
KW - Deformability
KW - Degree of substitution
KW - Glycol chitosan nanoparticles
KW - In vivo imaging
KW - Stability
KW - Tumor targeting
UR - http://www.scopus.com/inward/record.url?scp=84866735034&partnerID=8YFLogxK
U2 - 10.1016/j.jconrel.2012.07.028
DO - 10.1016/j.jconrel.2012.07.028
M3 - Article
C2 - 22846988
AN - SCOPUS:84866735034
SN - 0168-3659
VL - 163
SP - 2
EP - 9
JO - Journal of Controlled Release
JF - Journal of Controlled Release
IS - 1
ER -