Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability

Wooseong Kim, Farah K. Tengra, Jasmine Shong, Nicholas Marchand, Hon Kit Chan, Zachary Young, Ravindra C. Pangule, Macarena Parra, Jonathan S. Dordick, Joel L. Plawsky, Cynthia H. Collins

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Background: Abundant populations of bacteria have been observed on Mir and the International Space Station. While some experiments have shown that bacteria cultured during spaceflight exhibit a range of potentially troublesome characteristics, including increases in growth, antibiotic resistance and virulence, other studies have shown minimal differences when cells were cultured during spaceflight or on Earth. Although the final cell density of bacteria grown during spaceflight has been reported for several species, we are not yet able to predict how different microorganisms will respond to the microgravity environment. In order to build our understanding of how spaceflight affects bacterial final cell densities, additional studies are needed to determine whether the observed differences are due to varied methods, experimental conditions, or organism specific responses. Results: Here, we have explored how phosphate concentration, carbon source, oxygen availability, and motility affect the growth of Pseudomonas aeruginosa in modified artificial urine media during spaceflight. We observed that P. aeruginosa grown during spaceflight exhibited increased final cell density relative to normal gravity controls when low concentrations of phosphate in the media were combined with decreased oxygen availability. In contrast, when the availability of either phosphate or oxygen was increased, no difference in final cell density was observed between spaceflight and normal gravity. Because motility has been suggested to affect how microbes respond to microgravity, we compared the growth of wild-type P. aeruginosa to a ΔmotABCD mutant deficient in swimming motility. However, the final cell densities observed with the motility mutant were consistent with those observed with wild type for all conditions tested. Conclusions: These results indicate that differences in bacterial final cell densities observed between spaceflight and normal gravity are due to an interplay between microgravity conditions and the availability of substrates essential for growth. Further, our results suggest that microbes grown under nutrient-limiting conditions are likely to reach higher cell densities under microgravity conditions than they would on Earth. Considering that the majority of bacteria inhabiting spacecrafts and space stations are likely to live under nutrient limitations, our findings highlight the need to explore the impact microgravity and other aspects of the spaceflight environment have on microbial growth and physiology.

Original languageEnglish
Article number241
JournalBMC Microbiology
Volume13
Issue number1
DOIs
StatePublished - 2013

Bibliographical note

Funding Information:
We would like to thank BioServe Space Technologies, team members at Kennedy Space Center and the crew of STS-135 for their support. We also thank G. O’Toole for generously providing the P. aeruginosa strains used in these studies. This work was supported by NASA-Ames Research Center (Grant No. NNX09AI70G).

Keywords

  • Flow cytometry
  • Microgravity
  • Motility
  • Pseudomonas aeruginosa
  • Spaceflight

Fingerprint

Dive into the research topics of 'Effect of spaceflight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability'. Together they form a unique fingerprint.

Cite this