TY - JOUR
T1 - Dual Electrochemical Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide and Potassium Ion Changes in a Rat Brain during Spontaneous Neocortical Epileptic Seizure
AU - Moon, Jungmi
AU - Ha, Yejin
AU - Kim, Misun
AU - Sim, Jeongeun
AU - Lee, Youngmi
AU - Suh, Minah
N1 - Funding Information:
This work was financially supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A2A2A05003769) and by IBS-R015-D1.
Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/9/20
Y1 - 2016/9/20
N2 - In this work, we developed a dual amperometric/potentiometric microsensor for sensing nitric oxide (NO) and potassium ion (K+). The dual NO/K+ sensor was prepared based on a dual recessed electrode possessing Pt (diameter, 50 μm) and Ag (diameter, 76.2 μm) microdisks. The Pt disk surface (WE1) was modified with electroplatinization and the following coating with fluorinated xerogel; and the Ag disk surface (WE2) was oxidized to AgCl on which K+ ion selective membrane was loaded subsequent to the silanization. WE1 and WE2 of a dual microsensor were used for amperometric sensing of NO (106 ± 28 pA μM-1, n = 10, at +0.85 V applied vs Ag/AgCl) and for potentiometric sensing of K+ (51.6 ± 1.9 mV pK-1, n = 10), respectively, with high sensitivity. In addition, the sensor showed good selectivity over common biological interferents, sufficiently fast response time and relevant stability (within 6 h in vivo experiment). The sensor had a small dimension (end plane diameter, 428 ± 97 μm, n = 20) and needle-like sharp geometry which allowed the sensor to be inserted in biological tissues. Taking advantage of this insertability, the sensor was applied for the simultaneous monitoring of NO and K+ changes in a living rat brain cortex at a depth of 1.19 ± 0.039 mm and near the spontaneous epileptic seizure focus. The seizures were induced with 4-aminopyridine injection onto the rat brain cortex. NO and K+ levels were dynamically changed in clear correlation with the electrophysiological recording of seizures. This indicates that the dual NO/K+ sensor's measurements well reflect membrane potential changes of neurons and associated cellular components of neurovascular coupling. The newly developed NO/K+ dual microsensor showed the feasibility of real-time fast monitoring of dynamic changes of closely linked NO and K+ in vivo.
AB - In this work, we developed a dual amperometric/potentiometric microsensor for sensing nitric oxide (NO) and potassium ion (K+). The dual NO/K+ sensor was prepared based on a dual recessed electrode possessing Pt (diameter, 50 μm) and Ag (diameter, 76.2 μm) microdisks. The Pt disk surface (WE1) was modified with electroplatinization and the following coating with fluorinated xerogel; and the Ag disk surface (WE2) was oxidized to AgCl on which K+ ion selective membrane was loaded subsequent to the silanization. WE1 and WE2 of a dual microsensor were used for amperometric sensing of NO (106 ± 28 pA μM-1, n = 10, at +0.85 V applied vs Ag/AgCl) and for potentiometric sensing of K+ (51.6 ± 1.9 mV pK-1, n = 10), respectively, with high sensitivity. In addition, the sensor showed good selectivity over common biological interferents, sufficiently fast response time and relevant stability (within 6 h in vivo experiment). The sensor had a small dimension (end plane diameter, 428 ± 97 μm, n = 20) and needle-like sharp geometry which allowed the sensor to be inserted in biological tissues. Taking advantage of this insertability, the sensor was applied for the simultaneous monitoring of NO and K+ changes in a living rat brain cortex at a depth of 1.19 ± 0.039 mm and near the spontaneous epileptic seizure focus. The seizures were induced with 4-aminopyridine injection onto the rat brain cortex. NO and K+ levels were dynamically changed in clear correlation with the electrophysiological recording of seizures. This indicates that the dual NO/K+ sensor's measurements well reflect membrane potential changes of neurons and associated cellular components of neurovascular coupling. The newly developed NO/K+ dual microsensor showed the feasibility of real-time fast monitoring of dynamic changes of closely linked NO and K+ in vivo.
UR - http://www.scopus.com/inward/record.url?scp=84988528043&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.6b02396
DO - 10.1021/acs.analchem.6b02396
M3 - Article
C2 - 27535464
AN - SCOPUS:84988528043
SN - 0003-2700
VL - 88
SP - 8942
EP - 8948
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 18
ER -