TY - JOUR
T1 - Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function
AU - Cao, Dehua
AU - Kevala, Karl
AU - Kim, Jeffrey
AU - Moon, Hyun Seuk
AU - Jun, Sang Beom
AU - Lovinger, David
AU - Kim, Hee Yong
PY - 2009/10
Y1 - 2009/10
N2 - Docosahexaenoic acid (DHA, 22:6n-3), the major polyunsaturated fatty acid accumulated in the brain during development, has been implicated in learning and memory, but underlying cellular mechanisms are not clearly understood. Here, we demonstrate that DHA significantly affects hippocampal neuronal development and synaptic function in developing hippocampi. In embryonic neuronal cultures, DHA supplementation uniquely promoted neurite growth, synapsin puncta formation and synaptic protein expression, particularly synapsins and glutamate receptors. In DHA-supplemented neurons, spontaneous synaptic activity was significantly increased, mostly because of enhanced glutamatergic synaptic activity. Conversely, hippocampal neurons from DHA-depleted fetuses showed inhibited neurite growth and synaptogenesis. Furthermore, n-3 fatty acid deprivation during development resulted in marked decreases of synapsins and glutamate receptor subunits in the hippocampi of 18-day-old pups with concomitant impairment of long-term potentiation, a cellular mechanism underlying learning and memory. While levels of synapsins and NMDA receptor subunit NR2A were decreased in most hippocampal regions, NR2A expression was particularly reduced in CA3, suggesting possible role of DHA in CA3-NMDA receptor-dependent learning and memory processes. The DHA-induced neurite growth, synaptogenesis, synapsin, and glutamate receptor expression, and glutamatergic synaptic function may represent important cellular aspects supporting the hippocampus-related cognitive function improved by DHA.
AB - Docosahexaenoic acid (DHA, 22:6n-3), the major polyunsaturated fatty acid accumulated in the brain during development, has been implicated in learning and memory, but underlying cellular mechanisms are not clearly understood. Here, we demonstrate that DHA significantly affects hippocampal neuronal development and synaptic function in developing hippocampi. In embryonic neuronal cultures, DHA supplementation uniquely promoted neurite growth, synapsin puncta formation and synaptic protein expression, particularly synapsins and glutamate receptors. In DHA-supplemented neurons, spontaneous synaptic activity was significantly increased, mostly because of enhanced glutamatergic synaptic activity. Conversely, hippocampal neurons from DHA-depleted fetuses showed inhibited neurite growth and synaptogenesis. Furthermore, n-3 fatty acid deprivation during development resulted in marked decreases of synapsins and glutamate receptor subunits in the hippocampi of 18-day-old pups with concomitant impairment of long-term potentiation, a cellular mechanism underlying learning and memory. While levels of synapsins and NMDA receptor subunit NR2A were decreased in most hippocampal regions, NR2A expression was particularly reduced in CA3, suggesting possible role of DHA in CA3-NMDA receptor-dependent learning and memory processes. The DHA-induced neurite growth, synaptogenesis, synapsin, and glutamate receptor expression, and glutamatergic synaptic function may represent important cellular aspects supporting the hippocampus-related cognitive function improved by DHA.
KW - Docosahexaenoic acid
KW - Hippocampal development
KW - Long-term potentiation
KW - Neurite growth
KW - Synaptic function
KW - Synaptogenesis
UR - http://www.scopus.com/inward/record.url?scp=70349325995&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2009.06335.x
DO - 10.1111/j.1471-4159.2009.06335.x
M3 - Article
C2 - 19682204
AN - SCOPUS:70349325995
SN - 0022-3042
VL - 111
SP - 510
EP - 521
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 2
ER -