Discrete-Continuous Transformation Matching for Dense Semantic Correspondence

Seungryong Kim, Dongbo Min, Stephen Lin, Kwanghoon Sohn

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there is a lack of practical solutions for more complex deformations such as affine transformations because of the tremendous size of the associated solution space. To address this problem, we present a discrete-continuous transformation matching (DCTM) framework where dense affine transformation fields are inferred through a discrete label optimization in which the labels are iteratively updated via continuous regularization. In this way, our approach draws solutions from the continuous space of affine transformations in a manner that can be computed efficiently through constant-time edge-aware filtering and a proposed affine-varying CNN-based descriptor. Furthermore, leveraging correspondence consistency and confidence-guided filtering in each iteration facilitates the convergence of our method. Experimental results show that this model outperforms the state-of-the-art methods for dense semantic correspondence on various benchmarks and applications.

Original languageEnglish
Article number8510898
Pages (from-to)59-73
Number of pages15
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume42
Issue number1
DOIs
StatePublished - 1 Jan 2020

Bibliographical note

Publisher Copyright:
© 1979-2012 IEEE.

Keywords

  • Dense semantic correspondence
  • continuous optimization
  • discrete optimization
  • interative inference

Fingerprint

Dive into the research topics of 'Discrete-Continuous Transformation Matching for Dense Semantic Correspondence'. Together they form a unique fingerprint.

Cite this