Abstract
Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there is a lack of practical solutions for more complex deformations such as affine transformations because of the tremendous size of the associated solution space. To address this problem, we present a discrete-continuous transformation matching (DCTM) framework where dense affine transformation fields are inferred through a discrete label optimization in which the labels are iteratively updated via continuous regularization. In this way, our approach draws solutions from the continuous space of affine transformations in a manner that can be computed efficiently through constant-time edge-aware filtering and a proposed affine-varying CNN-based descriptor. Furthermore, leveraging correspondence consistency and confidence-guided filtering in each iteration facilitates the convergence of our method. Experimental results show that this model outperforms the state-of-the-art methods for dense semantic correspondence on various benchmarks and applications.
Original language | English |
---|---|
Article number | 8510898 |
Pages (from-to) | 59-73 |
Number of pages | 15 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 42 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jan 2020 |
Bibliographical note
Publisher Copyright:© 1979-2012 IEEE.
Keywords
- Dense semantic correspondence
- continuous optimization
- discrete optimization
- interative inference