Dietary beet pulp decreases taurine status in dogs fed low protein diet

Kwang Suk Ko, Andrea J. Fascetti

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Background: It is known that large dogs who are fed lamb and rice diets are at increased risk to develop taurine-deficiency-induced dilated cardiomyopathy. Since dogs obligatorily conjugate bile acids (BA) with taurine, we determined whether rice bran (RB) or other fibers (cellulose; CL, beet pulp; BP) would affect BA excretion and/or the taurine status of dogs. Results: Eighteen medium/large mixed-breed dogs were given purified diets containing CL, BP, or RB for 12 weeks. Taurine concentrations in plasma and whole blood were significantly decreased at week 12. The BP group, compared to the CL or RB groups, showed significantly lower taurine concentrations in plasma (6.5 ± 0.5 vs 20.4 ± 3.9 and 13.1 ± 2.0 μmol/L, respectively, P < 0.01, mean ± SEM) and in whole blood (79 ± 10 vs 143 ± 14 and 127 ± 14 μmol/L, respectively, P < 0.01), lower apparent protein digestibility (81.9 ± 0.6 vs 88.8 ± 0.6 and 88.1 ± 1.2 %, respectively, P < 0.01), and higher BA excretions (5.6 ± 0.1 vs 3.4 ± 0.5 and 3.4 ± 0.4 μmol/g feces, respectively, P < 0.05) at week 12. Conclusions: These results do not support the hypothesis that RB is likely to be a primary cause of lamb meal and rice diets, increasing the risk of taurine deficiency in large dogs. However these indicate that BP may contribute to a decrease taurine status in dogs by increasing excretion of fecal BA and decreasing protein digestibility, thus decreasing the bioavailability of sulfur amino acids, the precursors of taurine.

Original languageEnglish
Article number29
JournalJournal of Animal Science and Technology
Volume58
DOIs
StatePublished - 2016

Keywords

  • Bile acid excretion
  • Dilated cardiomyopathy
  • Dogs
  • Fiber
  • Taurine deficiency

Fingerprint

Dive into the research topics of 'Dietary beet pulp decreases taurine status in dogs fed low protein diet'. Together they form a unique fingerprint.

Cite this