TY - JOUR
T1 - Development and external validation of a deep learning algorithm for prognostication of cardiovascular outcomes
AU - Cho, In Jeong
AU - Sung, Ji Min
AU - Kim, Hyeon Chang
AU - Lee, Sang Eun
AU - Chae, Myeong Hun
AU - Kavousi, Maryam
AU - Rueda-Ochoa, Oscar L.
AU - Ikram, M. Arfan
AU - Franco, Oscar H.
AU - Min, James K.
AU - Chang, Hyuk Jae
N1 - Funding Information:
This research was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korean government (MSIT) (No. 2017-0-00255, Autonomous Digital Companion Development and No.2018-0-00861, Intelligent SW Technology Development for Medical Data Analysis).
Funding Information:
The Rotterdam Study is funded by Erasmus MC and Erasmus University, Rotterdam, The Netherlands; The Netherlands Organisation for Scientific Research (NWO); The Netherlands Organisation for the Health Research and Development (ZonMw); The Research Institute for Diseases in the Elderly (RIDE); The Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; The European Commission (DG XII); and The Municipality of Rotterdam. M. Kavousi is supported by the NWO VENI grant (VENI, 91616079). Oscar L. Rueda is supported by a scholarship by COLCIENCIAS and Universidad Industrial de Santander from Colombia. O.H. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.); Metagenics Inc.; and AXA. The funding sources had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.
Publisher Copyright:
© 2020. The Korean Society of Cardiology.
PY - 2020
Y1 - 2020
N2 - Background and Objectives: We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression. Methods: Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): A Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included. Results: Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886-0.907) in men and 0.921 (0.908-0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860-0.876) in men and 0.889 (0.876-0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824-0.897) in men and 0.867 (0.830-0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women). Conclusions: A DL algorithm exhibited greater discriminative accuracy than Cox model approaches.
AB - Background and Objectives: We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression. Methods: Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): A Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included. Results: Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886-0.907) in men and 0.921 (0.908-0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860-0.876) in men and 0.889 (0.876-0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824-0.897) in men and 0.867 (0.830-0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women). Conclusions: A DL algorithm exhibited greater discriminative accuracy than Cox model approaches.
KW - Artificial intelligence
KW - Cardiovascular diseases
UR - http://www.scopus.com/inward/record.url?scp=85077470741&partnerID=8YFLogxK
U2 - 10.4070/kcj.2019.0105
DO - 10.4070/kcj.2019.0105
M3 - Article
AN - SCOPUS:85077470741
SN - 1738-5520
VL - 50
SP - 72
EP - 84
JO - Korean Circulation Journal
JF - Korean Circulation Journal
IS - 1
ER -