TY - GEN
T1 - Determination of bicycle handle diameters considering hand anthropometric data and user satisfaction
AU - Chang, Joonho
AU - Jung, Kihyo
AU - Hwang, Jesun
AU - Kang, Yuncheol
AU - Lee, Seokgi
AU - Freivalds, Andris
PY - 2010
Y1 - 2010
N2 - Ergonomic product design considering both anthropometric variability and user preference is required for harmonizing the target users and products. In this study, bicycle handle diameters for three size categories were determined by considering anthropometric variability and preference. To design the bicycle handles, a four-step process was applied: (1) define anthropometric data, (2) develop size chart. (3) define a design equation, and (4) determine design values. In the first step, the 1988 US Army data was chosen as anthropometric data for the design target population. In the second step, to develop a size chart of bicycle handle, hand length and circumference were selected as key dimensions by principal component analysis on six representative hand dimensions. Next, a size chart of three categories (small: 175.5 mm, medium: 186.7 mm, and large: 196.2 mm) were derived by K-means clustering analysis for hand length and circumference. In the third step, the design equation accounting geometrical relationship between the sizes of two key dimensions and diameters of bicycle handle was adopted from a relevant existing research. In the last step, design values (40.9 mm, 43.5mm. and 45.7 mm) for each size category were calculated by inputting the sizes of the key dimensions to the design equation. To evaluate user satisfaction level of the bicycle handles, a user testing of three handle prototypes was conducted for 17 participants with various hand sizes. The test results showed that satisfaction scores for each hand group were significantly higher at the corresponding size category.
AB - Ergonomic product design considering both anthropometric variability and user preference is required for harmonizing the target users and products. In this study, bicycle handle diameters for three size categories were determined by considering anthropometric variability and preference. To design the bicycle handles, a four-step process was applied: (1) define anthropometric data, (2) develop size chart. (3) define a design equation, and (4) determine design values. In the first step, the 1988 US Army data was chosen as anthropometric data for the design target population. In the second step, to develop a size chart of bicycle handle, hand length and circumference were selected as key dimensions by principal component analysis on six representative hand dimensions. Next, a size chart of three categories (small: 175.5 mm, medium: 186.7 mm, and large: 196.2 mm) were derived by K-means clustering analysis for hand length and circumference. In the third step, the design equation accounting geometrical relationship between the sizes of two key dimensions and diameters of bicycle handle was adopted from a relevant existing research. In the last step, design values (40.9 mm, 43.5mm. and 45.7 mm) for each size category were calculated by inputting the sizes of the key dimensions to the design equation. To evaluate user satisfaction level of the bicycle handles, a user testing of three handle prototypes was conducted for 17 participants with various hand sizes. The test results showed that satisfaction scores for each hand group were significantly higher at the corresponding size category.
UR - http://www.scopus.com/inward/record.url?scp=79953099375&partnerID=8YFLogxK
U2 - 10.1518/107118110X12829370090928
DO - 10.1518/107118110X12829370090928
M3 - Conference contribution
AN - SCOPUS:79953099375
SN - 9781617820885
T3 - Proceedings of the Human Factors and Ergonomics Society
SP - 1790
EP - 1793
BT - 54th Human Factors and Ergonomics Society Annual Meeting 2010, HFES 2010
T2 - 54th Human Factors and Ergonomics Society Annual Meeting 2010, HFES 2010
Y2 - 27 September 2010 through 1 October 2010
ER -