TY - JOUR
T1 - Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination
AU - Dai, Yan
AU - Wong, Ben
AU - Yen, Yi Meng
AU - Oettinger, Marjorie A.
AU - Kwon, Jongbum
AU - Johnson, Reid C.
PY - 2005/6
Y1 - 2005/6
N2 - Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.
AB - Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.
UR - http://www.scopus.com/inward/record.url?scp=18944398571&partnerID=8YFLogxK
U2 - 10.1128/MCB.25.11.4413-4425.2005
DO - 10.1128/MCB.25.11.4413-4425.2005
M3 - Article
C2 - 15899848
AN - SCOPUS:18944398571
SN - 0270-7306
VL - 25
SP - 4413
EP - 4425
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 11
ER -