Abstract
We demonstrated the detection of airborne bacteria by a disposable bio-precipitator and NanoGene assay combination. The bio-precipitator employed micro corona discharge at 1960 V and at less than 35 μA to simultaneously charge, capture and lyse the airborne bacteria. This was enabled by the use of a 15 μL liquid anode. Using a custom exposure setup, the target bacterium Bacillus subtilis in the atomization solution was rendered airborne. After exposure, the liquid anode in the bio-precipitator was subsequently measured for DNA concentration and analyzed with the NanoGene assay. As the bacterial concentration increased from 0.0104 to 42.6 g-DCW/L the released DNA concentration in the liquid anode increased from 2.10±1.57 to 75.00±7.15 ng/μL. More importantly, the NanoGene assay showed an increase in normalized fluorescence (gene quantification) from 18.03±1.18 to 49.71±1.82 as the bacterial concentrations increased from 0.0104 to 42.6 g-DCW/L. the electrical power consumption of the bio-precipitator was shown to be amenable for portable use. In addition, the detection limit of bio-precipitator and NanoGene assay combination in the context of environmentally relevant levels of airborne bacteria was also discussed.
Original language | English |
---|---|
Pages (from-to) | 205-212 |
Number of pages | 8 |
Journal | Biosensors and Bioelectronics |
Volume | 83 |
DOIs | |
State | Published - 15 Sep 2016 |
Bibliographical note
Publisher Copyright:© 2016 Elsevier B.V.
Keywords
- Airborne bacteria
- Bacillus subtilis
- Bio-precipitator
- Micro corona discharge
- NanoGene assay