Derivatives and exceptional poles of the local exterior square L-function for GLm

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Let π be an irreducible admissible representation of GLm(F) , where F is a non-archimedean local field of characteristic zero. In 1990’s Jacquet and Shalika established an integral representation for the exterior square L-function. We complete, following the method developed by Cogdell and Piatetski-Shapiro, the computation of the local exterior square L-function L(s, π, ∧ 2) via the integral representation in terms of L-functions of supercuspidal representations by a purely local argument. With this result, we show the equality of the local analytic L-functions L(s, π, ∧ 2) via the integral representation for the irreducible admissible representation π for GLm(F) and the local arithmetic L-functions L(s, ∧ 2(ϕ(π))) of its Langlands parameter ϕ(π) through local Langlands correspondence.

Original languageEnglish
Pages (from-to)1687-1725
Number of pages39
JournalMathematische Zeitschrift
Volume294
Issue number3-4
DOIs
StatePublished - 1 Apr 2020

Bibliographical note

Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords

  • Bernstein–Zelevinsky derivatives
  • Exceptional poles
  • Jacquet–Shalika integral
  • Local exterior square L-function

Fingerprint

Dive into the research topics of 'Derivatives and exceptional poles of the local exterior square L-function for GLm'. Together they form a unique fingerprint.

Cite this