Abstract
Regularization-based image restoration has remained an active research topic in image processing and computer vision. It often leverages a guidance signal captured in different fields as an additional cue. In this work, we present a general framework for image restoration, called deeply aggregated alternating minimization (DeepAM). We propose to train deep neural network to advance two of the steps in the conventional AM algorithm: proximal mapping and β- continuation. Both steps are learned from a large dataset in an end-to-end manner. The proposed framework enables the convolutional neural networks (CNNs) to operate as a regularizer in the AM algorithm. We show that our learned regularizer via deep aggregation outperforms the recent data-driven approaches as well as the nonlocal-based methods. The flexibility and effectiveness of our framework are demonstrated in several restoration tasks, including single image denoising, RGB-NIR restoration, and depth superresolution.
Original language | English |
---|---|
Title of host publication | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 284-292 |
Number of pages | 9 |
ISBN (Electronic) | 9781538604571 |
DOIs | |
State | Published - 6 Nov 2017 |
Event | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States Duration: 21 Jul 2017 → 26 Jul 2017 |
Publication series
Name | Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Volume | 2017-January |
Conference
Conference | 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 21/07/17 → 26/07/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.