TY - JOUR
T1 - Cytidine deaminase polymorphisms and worse treatment response in normal karyotype AML
AU - Hyo Kim, Lyoung
AU - Sub Cheong, Hyun
AU - Koh, Youngil
AU - Ahn, Kwang Sung
AU - Lee, Chansu
AU - Kim, Hyung Lae
AU - Doo Shin, Hyoung
AU - Yoon, Sung Soo
N1 - Publisher Copyright:
© 2015 The Japan Society of Human Genetics All rights reserved.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - The cytidine deaminase (CDA) catalyzes the irreversible hydrolytic deamination of the cytarabine (AraC) into a 1-β-D-Arabinofuranosyluracil (AraU), an inactive metabolite that plays a crucial role in lowering the amount of AraC, a key chemotherapeutic drug, in the treatment of patients with acute myeloid leukemia (AML). In this study, we hypothesized that CDA polymorphisms were associated with the AraC metabolism for AML treatment and/or related clinical phenotypes. We analyzed 16 polymorphisms of CDA among 50 normal karyotype AML (NK-AML) patients, 45 abnormal karyotype AML (AK-AML) patients and 241 normal controls (NC). Several polymorphisms and haplotypes, rs532545, rs2072671, rs471760, rs4655226, rs818194 and CDA-ht3, were found to have a strong correlation with NK-AML compared with NC and these polymorphisms also revealed strong linkage disequilibrium with each other. Among them, rs2072671 (79A>C), which is located in a coding region and the resultant amino acid change K27Q, showed significant associations with NK-AML compared with NC (P=0.009 and odds ratio=2.44 in the dominant model). The AC and CC genotypes of rs2072671 (79A>C) were significantly correlated with shorter overall survival rates (P=0.03, hazard ratio=1.84) and first complete remission duration (P=0.007, hazard ratio=3.24) compared with the AA genotype in the NK-AML patients. Our results indicate that rs2072671 in CDA may be an important prognostic marker in NK-AML patients.
AB - The cytidine deaminase (CDA) catalyzes the irreversible hydrolytic deamination of the cytarabine (AraC) into a 1-β-D-Arabinofuranosyluracil (AraU), an inactive metabolite that plays a crucial role in lowering the amount of AraC, a key chemotherapeutic drug, in the treatment of patients with acute myeloid leukemia (AML). In this study, we hypothesized that CDA polymorphisms were associated with the AraC metabolism for AML treatment and/or related clinical phenotypes. We analyzed 16 polymorphisms of CDA among 50 normal karyotype AML (NK-AML) patients, 45 abnormal karyotype AML (AK-AML) patients and 241 normal controls (NC). Several polymorphisms and haplotypes, rs532545, rs2072671, rs471760, rs4655226, rs818194 and CDA-ht3, were found to have a strong correlation with NK-AML compared with NC and these polymorphisms also revealed strong linkage disequilibrium with each other. Among them, rs2072671 (79A>C), which is located in a coding region and the resultant amino acid change K27Q, showed significant associations with NK-AML compared with NC (P=0.009 and odds ratio=2.44 in the dominant model). The AC and CC genotypes of rs2072671 (79A>C) were significantly correlated with shorter overall survival rates (P=0.03, hazard ratio=1.84) and first complete remission duration (P=0.007, hazard ratio=3.24) compared with the AA genotype in the NK-AML patients. Our results indicate that rs2072671 in CDA may be an important prognostic marker in NK-AML patients.
UR - http://www.scopus.com/inward/record.url?scp=84951171785&partnerID=8YFLogxK
U2 - 10.1038/jhg.2015.105
DO - 10.1038/jhg.2015.105
M3 - Article
C2 - 26354033
AN - SCOPUS:84951171785
SN - 1434-5161
VL - 60
SP - 749
EP - 754
JO - Journal of Human Genetics
JF - Journal of Human Genetics
IS - 12
ER -