TY - JOUR
T1 - Cycling kinematics in healthy adults for musculoskeletal rehabilitation guidance
AU - Yum, Haeun
AU - Kim, Hyang
AU - Lee, Taeyong
AU - Park, Moon Seok
AU - Lee, Seung Yeol
N1 - Funding Information:
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2019R1A2C2010150). This funding source had no role in the design of this study and will not have any role during its execution, analyses, interpretation of the data, or decision to submit results.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Stationary cycling is commonly used for postoperative rehabilitation of physical disabilities; however, few studies have focused on the three-dimensional (3D) kinematics of rehabilitation. This study aimed to elucidate the three-dimensional lower limb kinematics of people with healthy musculoskeletal function and the effect of sex and age on kinematics using a controlled bicycle configuration. Methods: Thirty-one healthy adults participated in the study. The position of the stationary cycle was standardized using the LeMond method by setting the saddle height to 85.5% of the participant’s inseam. The participants maintained a pedaling rate of 10–12 km/h, and the average value of three successive cycles of the right leg was used for analysis. The pelvis, hip, knee, and ankle joint motions during cycling were evaluated in the sagittal, coronal, and transverse planes. Kinematic data were normalized to 0–100% of the cycling cycle. The Kolmogorov-Smirnov test, Mann-Whitney U test, Kruskal-Wallis test, and k-fold cross-validation were used to analyze the data. Results: In the sagittal plane, the cycling ranges of motion (ROMs) were 1.6° (pelvis), 43.9° (hip), 75.2° (knee), and 26.9° (ankle). The coronal plane movement was observed in all joints, and the specific ROMs were 6.6° (knee) and 5.8° (ankle). There was significant internal and external rotation of the hip (ROM: 11.6°), knee (ROM: 6.6°), and ankle (ROM: 10.3°) during cycling. There was no difference in kinematic data of the pelvis, hip, knee, and ankle between the sexes (p = 0.12 to 0.95) and between different age groups (p = 0.11 to 0.96) in all anatomical planes. Conclusions: The kinematic results support the view that cycling is highly beneficial for comprehensive musculoskeletal rehabilitation. These results might help clinicians set a target of recovery ROM based on healthy and non-elite individuals and issue suitable guidelines to patients.
AB - Background: Stationary cycling is commonly used for postoperative rehabilitation of physical disabilities; however, few studies have focused on the three-dimensional (3D) kinematics of rehabilitation. This study aimed to elucidate the three-dimensional lower limb kinematics of people with healthy musculoskeletal function and the effect of sex and age on kinematics using a controlled bicycle configuration. Methods: Thirty-one healthy adults participated in the study. The position of the stationary cycle was standardized using the LeMond method by setting the saddle height to 85.5% of the participant’s inseam. The participants maintained a pedaling rate of 10–12 km/h, and the average value of three successive cycles of the right leg was used for analysis. The pelvis, hip, knee, and ankle joint motions during cycling were evaluated in the sagittal, coronal, and transverse planes. Kinematic data were normalized to 0–100% of the cycling cycle. The Kolmogorov-Smirnov test, Mann-Whitney U test, Kruskal-Wallis test, and k-fold cross-validation were used to analyze the data. Results: In the sagittal plane, the cycling ranges of motion (ROMs) were 1.6° (pelvis), 43.9° (hip), 75.2° (knee), and 26.9° (ankle). The coronal plane movement was observed in all joints, and the specific ROMs were 6.6° (knee) and 5.8° (ankle). There was significant internal and external rotation of the hip (ROM: 11.6°), knee (ROM: 6.6°), and ankle (ROM: 10.3°) during cycling. There was no difference in kinematic data of the pelvis, hip, knee, and ankle between the sexes (p = 0.12 to 0.95) and between different age groups (p = 0.11 to 0.96) in all anatomical planes. Conclusions: The kinematic results support the view that cycling is highly beneficial for comprehensive musculoskeletal rehabilitation. These results might help clinicians set a target of recovery ROM based on healthy and non-elite individuals and issue suitable guidelines to patients.
KW - Cycling kinematics
KW - Musculoskeletal rehabilitation
KW - Range of motion
UR - http://www.scopus.com/inward/record.url?scp=85121416399&partnerID=8YFLogxK
U2 - 10.1186/s12891-021-04905-2
DO - 10.1186/s12891-021-04905-2
M3 - Article
C2 - 34911507
AN - SCOPUS:85121416399
VL - 22
JO - BMC Musculoskeletal Disorders
JF - BMC Musculoskeletal Disorders
SN - 1471-2474
IS - 1
M1 - 1044
ER -