Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation

Yae Won Park, Seo Jeong Shin, Jihwan Eom, Heirim Lee, Seng Chan You, Sung Soo Ahn, Soo Mee Lim, Rae Woong Park, Seung Koo Lee

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The heterogeneity of MRI is one of the major reasons for decreased performance of a radiomics model on external validation, limiting the model’s generalizability and clinical application. We aimed to establish a generalizable radiomics model to predict meningioma grade on external validation through leveraging Cycle-Consistent Adversarial Networks (CycleGAN). In this retrospective study, 257 patients with meningioma were included in the institutional training set. Radiomic features (n = 214) were extracted from T2-weighted (T2) and contrast-enhanced T1 (T1C) images. After radiomics feature selection, extreme gradient boosting classifiers were developed. The models were validated in the external validation set consisting of 61 patients with meningiomas. To reduce the gap in generalization associated with the inter-institutional heterogeneity of MRI, the smaller image set style of the external validation was translated into the larger image set style of the institutional training set using CycleGAN. On external validation before CycleGAN application, the performance of the combined T2 and T1C models showed an area under the curve (AUC), accuracy, and F1 score of 0.77 (95% confidence interval 0.63–0.91), 70.7%, and 0.54, respectively. After applying CycleGAN, the performance of the combined T2 and T1C models increased, with an AUC, accuracy, and F1 score of 0.83 (95% confidence interval 0.70–0.97), 73.2%, and 0.59, respectively. Quantitative metrics (by Fréchet Inception Distance) showed that CycleGAN can decrease inter-institutional image heterogeneity while preserving predictive information. In conclusion, leveraging CycleGAN may be helpful to increase the generalizability of a radiomics model in differentiating meningioma grade on external validation.

Original languageEnglish
Article number7042
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

Bibliographical note

Funding Information:
This research received funding from the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, Information and Communication Technologies & Future Planning (2020R1A2C1003886). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2020R1I1A1A01071648). This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (HI21C1161), and by a Severance Hospital Research fund for Clinical excellence (C-2021-0019). This research was also funded by the Bio Industrial Strategic Technology Development Program (20003883, 20005021) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, Republic of Korea (HR16C0001).

Publisher Copyright:
© 2022, The Author(s).

Fingerprint

Dive into the research topics of 'Cycle-consistent adversarial networks improves generalizability of radiomics model in grading meningiomas on external validation'. Together they form a unique fingerprint.

Cite this