Abstract
Lon proteases are distributed in all kingdoms of life and are required for survival of cells under stress. Lon is a tandem fusion of an AAA+ molecular chaperone and a protease with a serine-lysine catalytic dyad. We report the 2.0-Å resolution crystal structure of Thermococcus onnurineus NA1 Lon (TonLon). The structure is a three-tiered hexagonal cylinder with a large sequestered chamber accessible through an axial channel. Conserved loops extending from the AAA+ domain combine with an insertion domain containing the membrane anchor to form an apical domain that serves as a gate governing substrate access to an internal unfolding and degradation chamber. Alternating AAA+ domains are in tight- and weak-binding nucleotide states with different domain orientations and intersubunit contacts, reflecting intramolecular dynamics during ATP-driven protein unfolding and translocation. The bowl-shaped proteolytic chamber is contiguous with the chaperone chamber allowing internalized proteins direct access to the proteolytic sites without further gating restrictions.
Original language | English |
---|---|
Pages (from-to) | 3520-3530 |
Number of pages | 11 |
Journal | EMBO Journal |
Volume | 29 |
Issue number | 20 |
DOIs | |
State | Published - Oct 2010 |
Keywords
- AAA\+ protein
- ATP-dependent protease
- TonLon
- compartmentalized protease
- protein quality control