TY - GEN
T1 - Cross-based local multipoint filtering
AU - Lu, Jiangbo
AU - Shi, Keyang
AU - Min, Dongbo
AU - Lin, Liang
AU - Do, Minh N.
PY - 2012
Y1 - 2012
N2 - This paper presents a cross-based framework of performing local multipoint filtering efficiently. We formulate the filtering process as a local multipoint regression problem, consisting of two main steps: 1) multipoint estimation, calculating the estimates for a set of points within a shape-adaptive local support, and 2) aggregation, fusing a number of multipoint estimates available for each point. Compared with the guided filter that applies the linear regression to all pixels covered by a fixed-sized square window non-adaptively, the proposed filtering framework is a more generalized form. Two specific filtering methods are instantiated from this framework, based on piecewise constant and piecewise linear modeling, respectively. Leveraging a cross-based local support representation and integration technique, the proposed filtering methods achieve theoretically strong results in an efficient manner, with the two main steps' complexity independent of the filtering kernel size. We demonstrate the strength of the proposed filters in various applications including stereo matching, depth map enhancement, edge-preserving smoothing, color image denoising, detail enhancement, and flash/no-flash denoising.
AB - This paper presents a cross-based framework of performing local multipoint filtering efficiently. We formulate the filtering process as a local multipoint regression problem, consisting of two main steps: 1) multipoint estimation, calculating the estimates for a set of points within a shape-adaptive local support, and 2) aggregation, fusing a number of multipoint estimates available for each point. Compared with the guided filter that applies the linear regression to all pixels covered by a fixed-sized square window non-adaptively, the proposed filtering framework is a more generalized form. Two specific filtering methods are instantiated from this framework, based on piecewise constant and piecewise linear modeling, respectively. Leveraging a cross-based local support representation and integration technique, the proposed filtering methods achieve theoretically strong results in an efficient manner, with the two main steps' complexity independent of the filtering kernel size. We demonstrate the strength of the proposed filters in various applications including stereo matching, depth map enhancement, edge-preserving smoothing, color image denoising, detail enhancement, and flash/no-flash denoising.
UR - http://www.scopus.com/inward/record.url?scp=84866659983&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2012.6247705
DO - 10.1109/CVPR.2012.6247705
M3 - Conference contribution
AN - SCOPUS:84866659983
SN - 9781467312264
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 430
EP - 437
BT - 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
T2 - 2012 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2012
Y2 - 16 June 2012 through 21 June 2012
ER -