TY - JOUR
T1 - Cooperative actions of Tra2α with 9G8 and SRp30c in the RNA splicing of the gonadotropin-releasing hormone gene transcript
AU - Eonyoung, Park
AU - Jin, Han
AU - Gi, Hoon Son
AU - Mi, Sun Lee
AU - Sooyoung, Chung
AU - Sung, Ho Park
AU - Kyungsook, Park
AU - Kun, Ho Lee
AU - Sukwoo, Choi
AU - Jae, Young Seong
AU - Kyungjin, Kim
PY - 2006/1/6
Y1 - 2006/1/6
N2 - In earlier studies, we demonstrated that excision of the first intron (intron A) from the gonadotropin-releasing hormone (GnRH) transcript is highly cell type- and developmental stage-specific. The removal of GnRH intron A requires exonic splicing enhancers on exons 3 and 4 (ESE3 and ESE4, respectively). Tra2α, a serine/arginine-rich (SR)-like protein, specifically binds to ESE4, although it requires additional nuclear co-factors for efficient removal of this intron. In the present study, we demonstrate the cooperative action of multiple SR proteins in the regulation of GnRH pre-mRNA splicing. SRp30c specifically binds to both ESE3 and ESE4, whereas 9G8 binds to an element in exon 3 and strongly enhances the excision of GnRH intron A in the presence of minimal amount of other nuclear components. Interestingly, Tra2α can interact with either 9G8 or SRp30c, whereas no interaction between 9G8 and SRp30c is observed. Tra2α has an additive effect on the RNA binding of these proteins. Overexpression or knock-down of these three proteins in cultured cells further suggests their essential role in intron A excision activities, and their presence in GnRH neurons of the mouse preoptic area further strengthens this possibility. Together, these results indicate that interaction of Tra2α with 9G8 and SRp30c appears to be crucial for ESE-dependent GnRH pre-mRNA splicing, allowing efficient generation of mature mRNA in GnRH-producing cells.
AB - In earlier studies, we demonstrated that excision of the first intron (intron A) from the gonadotropin-releasing hormone (GnRH) transcript is highly cell type- and developmental stage-specific. The removal of GnRH intron A requires exonic splicing enhancers on exons 3 and 4 (ESE3 and ESE4, respectively). Tra2α, a serine/arginine-rich (SR)-like protein, specifically binds to ESE4, although it requires additional nuclear co-factors for efficient removal of this intron. In the present study, we demonstrate the cooperative action of multiple SR proteins in the regulation of GnRH pre-mRNA splicing. SRp30c specifically binds to both ESE3 and ESE4, whereas 9G8 binds to an element in exon 3 and strongly enhances the excision of GnRH intron A in the presence of minimal amount of other nuclear components. Interestingly, Tra2α can interact with either 9G8 or SRp30c, whereas no interaction between 9G8 and SRp30c is observed. Tra2α has an additive effect on the RNA binding of these proteins. Overexpression or knock-down of these three proteins in cultured cells further suggests their essential role in intron A excision activities, and their presence in GnRH neurons of the mouse preoptic area further strengthens this possibility. Together, these results indicate that interaction of Tra2α with 9G8 and SRp30c appears to be crucial for ESE-dependent GnRH pre-mRNA splicing, allowing efficient generation of mature mRNA in GnRH-producing cells.
UR - http://www.scopus.com/inward/record.url?scp=33644780370&partnerID=8YFLogxK
U2 - 10.1074/jbc.M505814200
DO - 10.1074/jbc.M505814200
M3 - Article
C2 - 16249178
AN - SCOPUS:33644780370
SN - 0021-9258
VL - 281
SP - 401
EP - 409
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 1
ER -