Controlled High-Capacity Storage of Lithium-Ions Using Void-Incorporated 3D MXene Architectures

Gyu Duk Min, Myeong Gyun Nam, Dongjae Kim, Min Jun Oh, Joon Hyung Moon, Woo Jae Kim, Juhyun Park, Pil J. Yoo

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

MXene, an example of 2D transition metal carbides, has recently been explored as an energy storage material for batteries or supercapacitors due to its high electrical conductivity and tunability of functional moieties. As with other 2D nano-materials, however, attempts to harness MXene-based electrodes have been limited by deterioration in mass transfer owing to self-stacking and aggregation problems of MXenes. Here, means of creating 3D-structured MXene films having voids of controlled size using templated co-assembly between MXene nanosheets and monodisperse colloidal particles are presented. Using a 3D-structured MXene-only film incorporating microscale voids as a thin-film electrode for Li-ion batteries yield an initial specific capacity of 435.4 mAh g−1 at a current density of 0.01 A g−1 and highly extended cyclic stability persisting 1200 cycles, approaching the reported theoretical capacity of MXene even without employing any binder or conductive species. Electrochemical analyses reveal that the improved specific capacity is attributable to enhanced contribution of pseudo-capacitive Li-storage compared to diffusion-mediated capacity, as incorporated voids tend to facilitate ionic transport into the interior region of the MXene films. Therefore, this work offers a concrete understanding to realize improved electrochemical performances of 2D nanomaterial-based electrodes, especially in the form of free-standing thin films.

Original languageEnglish
Article number2000734
JournalAdvanced Materials Interfaces
Volume7
Issue number14
DOIs
StatePublished - 1 Jul 2020

Bibliographical note

Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords

  • MXene
  • lithium-ion batteries
  • pseudo-capacitance
  • thin-film electrodes
  • void-incorporated structures

Fingerprint

Dive into the research topics of 'Controlled High-Capacity Storage of Lithium-Ions Using Void-Incorporated 3D MXene Architectures'. Together they form a unique fingerprint.

Cite this