Controllable Nitric Oxide Storage and Release in Cu-BTC: Crystallographic Insights and Bioactivity

Do Nam Lee, Yeong Rim Kim, Sohyeon Yang, Ngoc Minh Tran, Bong Joo Park, Su Jung Lee, Youngmee Kim, Hyojong Yoo, Sung Jin Kim, Jae Ho Shin

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Crystalline metal–organic frameworks (MOFs) are extensively used in areas such as gas storage and small-molecule drug delivery. Although Cu-BTC (1, MOF-199, BTC: benzene-1,3,5-tricarboxylate) has versatile applications, its NO storage and release characteristics are not amenable to therapeutic usage. In this work, micro-sized Cu-BTC was prepared solvothermally and then processed by ball-milling to prepare nano-sized Cu-BTC (2). The NO storage and release properties of the micro- and nano-sized Cu-BTC MOFs were morphology dependent. Control of the hydration degree and morphology of the NO delivery vehicle improved the NO release characteristics significantly. In particular, the nano-sized NO-loaded Cu-BTC (NO⊂nano-Cu-BTC, 4) released NO at 1.81 µmol·mg−1 in 1.2 h in PBS, which meets the requirements for clinical usage. The solid-state structural formula of NO⊂Cu-BTC was successfully determined to be [CuC6H2O5]·(NO)0.167 through single-crystal X-ray diffraction, suggesting no structural changes in Cu-BTC upon the intercalation of 0.167 equivalents of NO within the pores of Cu-BTC after NO loading. The structure of Cu-BTC was also stably maintained after NO release. NO⊂Cu-BTC exhibited significant antibacterial activity against six bacterial strains, including Gram-negative and positive bacteria. NO⊂Cu-BTC could be utilized as a hybrid NO donor to explore the synergistic effects of the known antibacterial properties of Cu-BTC.

Original languageEnglish
Article number9098
JournalInternational Journal of Molecular Sciences
Volume23
Issue number16
DOIs
StatePublished - Aug 2022

Keywords

  • MOFs
  • antibacterial activity
  • drug delivery
  • nitric oxide

Fingerprint

Dive into the research topics of 'Controllable Nitric Oxide Storage and Release in Cu-BTC: Crystallographic Insights and Bioactivity'. Together they form a unique fingerprint.

Cite this