TY - JOUR
T1 - Contribution of Na+-K+ pump and KIR currents to extracellular pH-dependent changes of contractility in rat superior mesenteric artery
AU - Kim, Moon Young
AU - Liang, Guo Hua
AU - Kim, Ji Aee
AU - Park, Seong Hoon
AU - Hah, Jong Sik
AU - Suh, Suk Hyo
PY - 2005/8
Y1 - 2005/8
N2 - We compared the branches and trunk of rat superior mesenteric artery (SMA) with respect to extracellular pH (pHo)-dependent changes in vascular contractility. Decreases in pHo from 7.8 to 6.4 significantly reduced apparent affinity (pD2) to norepinephrine (NE) and maximal contraction by NE, which were more prominent in larger-diameter arteries. On the other hand, decreases in pHo significantly reduced Ba 2+-sensitive K+-induced relaxation (which was evoked by elevation of extracellular K+ concentration from 6 to 12 mM) in the first branch and inhibited inwardly rectifying K+ (KIR) currents in cultured smooth muscle cells (SMCs) of SMA. RT-PCR revealed transcripts for Kir2.1 in the SMCs. Real-time PCR analysis revealed 6.1-, 3.3-, and 2.2-fold increases in the Kir2.1 mRNA-to-β-actin mRNA ratios of SMCs of the third, second, and first branches, respectively, vs. the corresponding relative levels of trunk SMCs. The magnitudes of K+-induced relaxation were significantly greater in smaller-diameter arteries, and there was a strong correlation between the transcript levels of Kir2.1 and K +-induced relaxation. A decrease in pHo reduced ouabain-sensitive K+-induced relaxation and ouabain-induced contraction. A decrease in pHo from 7.4 to 6.4 depolarized membrane potential of the cultured SMCs. From these results, we conclude that an increase in pHo activates KIR currents and the Na +-K+ pump, which then reduces vascular contractility. Inasmuch as KIR channel densities are significantly greater in smaller-diameter arteries, the reduction in vascular contractility on increasing pHo is more pronounced in smaller-diameter arteries.
AB - We compared the branches and trunk of rat superior mesenteric artery (SMA) with respect to extracellular pH (pHo)-dependent changes in vascular contractility. Decreases in pHo from 7.8 to 6.4 significantly reduced apparent affinity (pD2) to norepinephrine (NE) and maximal contraction by NE, which were more prominent in larger-diameter arteries. On the other hand, decreases in pHo significantly reduced Ba 2+-sensitive K+-induced relaxation (which was evoked by elevation of extracellular K+ concentration from 6 to 12 mM) in the first branch and inhibited inwardly rectifying K+ (KIR) currents in cultured smooth muscle cells (SMCs) of SMA. RT-PCR revealed transcripts for Kir2.1 in the SMCs. Real-time PCR analysis revealed 6.1-, 3.3-, and 2.2-fold increases in the Kir2.1 mRNA-to-β-actin mRNA ratios of SMCs of the third, second, and first branches, respectively, vs. the corresponding relative levels of trunk SMCs. The magnitudes of K+-induced relaxation were significantly greater in smaller-diameter arteries, and there was a strong correlation between the transcript levels of Kir2.1 and K +-induced relaxation. A decrease in pHo reduced ouabain-sensitive K+-induced relaxation and ouabain-induced contraction. A decrease in pHo from 7.4 to 6.4 depolarized membrane potential of the cultured SMCs. From these results, we conclude that an increase in pHo activates KIR currents and the Na +-K+ pump, which then reduces vascular contractility. Inasmuch as KIR channel densities are significantly greater in smaller-diameter arteries, the reduction in vascular contractility on increasing pHo is more pronounced in smaller-diameter arteries.
KW - Inwardly rectifying K current
KW - Potassium channels
KW - Smooth muscle cells
KW - Vascular contractility
UR - http://www.scopus.com/inward/record.url?scp=23744473402&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00050.2005
DO - 10.1152/ajpheart.00050.2005
M3 - Article
C2 - 15833810
AN - SCOPUS:23744473402
SN - 0363-6135
VL - 289
SP - H792-H800
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 2 58-2
ER -