TY - JOUR
T1 - Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications
AU - Gwon, Kihak
AU - Lee, Seonhwa
AU - Kim, Youngmee
AU - Choi, Jun
AU - Kim, Sujin
AU - Kim, Sung Jin
AU - Hong, Hye Jin
AU - Hwang, Youngmin
AU - Mori, Munemasa
AU - Lee, Do Nam
N1 - Publisher Copyright:
© 2023
PY - 2023/7/1
Y1 - 2023/7/1
N2 - Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4′-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.
AB - Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4′-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.
KW - Antimicrobial agent
KW - Dual-crosslinking hydrogel
KW - Metal organic framework
UR - http://www.scopus.com/inward/record.url?scp=85158870218&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.124840
DO - 10.1016/j.ijbiomac.2023.124840
M3 - Article
C2 - 37169053
AN - SCOPUS:85158870218
SN - 0141-8130
VL - 242
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 124840
ER -