Abstract
Construction of 3-dimensional (3-D) engineered tissue is increasingly being investigated for use in drug discovery and regenerative medicine. Here, we developed multi-layered 3-D cellular assembly by using magnetic nanoparticles (MNP) isolated from Magnetospirillum sp. AMB-1 magnetotactic bacteria. Magnetized human dermal fibroblasts (HDFBs) were prepared by treatment with the MNP, induced to form 3-D assembly under a magnetic field. Analyses including LIVE/DEAD assay, transmission electron microscopy revealed that the MNP were internalized via clathrin-mediated endocytosis without cytotoxicity. The magnetized HDFBs could build 3-D structure as a function of seeding density. When the highest seeding density (5×105 cells/mm2) was used, the thickness of assembly was 41.90±1.69μm, with approximately 9.3±1.6 cell layers being formed. Immunofluorescence staining confirmed homogeneous distribution of ECM and junction proteins throughout the 3-D assembly. Real-time PCR analysis showed decrease in expression levels of collagen types I and IV but increase in that of connexin 43 in the 3-D assembly compared with the 2-D culture. Finally, we demonstrated that the discernible layers can be formed hierarchically by serial assembly. In conclusion, our study showed that a multi-layered structure can be easily prepared using magnetically-assisted cellular assembly with highlighting cell-cell and cell-ECM communication.
Original language | English |
---|---|
Pages (from-to) | 1916-1928 |
Number of pages | 13 |
Journal | Journal of Biomedical Nanotechnology |
Volume | 12 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2016 |
Bibliographical note
Publisher Copyright:Copyright © 2016 American Scientific Publishers All rights reserved.
Keywords
- 3-D Cellular Assembly
- Cellular Internalization
- Hierarchical Tissue Mimicry
- Magnetic Nanoparticles
- Multi-Layered Structure