Connecting early summer cloud-controlled sunlight and late summer sea ice in the arctic

Yong Sang Choi, Baek Min Kim, Sun Kyong Hur, Seong Joong Kim, Joo Hong Kim, Chang Hoi Ho

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


This study demonstrates that absorbed solar radiation (ASR) at the top of the atmosphere in early summer (May–July) plays a precursory role in determining the Arctic sea ice concentration (SIC) in late summer (August–October). The monthly ASR anomalies are obtained over the Arctic Ocean (65°N–90°N) from the Clouds and the Earth’s Radiant Energy System during 2000–2013. The ASR changes primarily with cloud variation. We found that the ASR anomaly in early summer is significantly correlated with the SIC anomaly in late summer (correlation coefficient, r ≈ 0.8 with a lag of 1 to 4 months). The region exhibiting high (low) ASR anomalies and low (high) SIC anomalies varies yearly. The possible reason is that the solar heat input to ice is most effectively affected by the cloud shielding effect under the maximum TOA solar radiation in June and amplified by the ice-albedo feedback. This intimate delayed ASR-SIC relationship is not represented in most of current climate models. Rather, the models tend to over-emphasize internal sea ice processes in summer.

Original languageEnglish
Pages (from-to)11,087-11,099
JournalJournal of Geophysical Research C: Oceans
Issue number19
StatePublished - 16 Oct 2014

Bibliographical note

Publisher Copyright:
© 2014. American Geophysical Union. All Rights Reserved.


Dive into the research topics of 'Connecting early summer cloud-controlled sunlight and late summer sea ice in the arctic'. Together they form a unique fingerprint.

Cite this