Abstract
The first step in the controlled storage of lengthy DNA molecules is to keep DNA molecules separated while integrated in micrometer-sized space. Herein, we present hybrid Monte Carlo simulations of a histone-complexed DNA (hcDNA) molecule confined in a dense array of nanoposts. Depending on the nanopost dimension, a single, 8.7 kilobase pair hcDNA molecule was either localized and elongated in a single inter-post space surrounded by four nanoposts or spread over several inter-post spaces through passages between two neighboring nanoposts. The conformational change of a hcDNA molecule is interpreted in terms of competitive effects of confinements in the inter-post and passage spaces. We propose that, by elaborately designing nanopost arrays, the competitive confinement effects can be adjusted such that each hcDNA molecule is localized in a single inter-post space, and thereby multiple hcDNA molecules can be physically separated from each other while stored together in the nanopost array.
Original language | English |
---|---|
Pages (from-to) | 6391-6398 |
Number of pages | 8 |
Journal | Nanoscale |
Volume | 9 |
Issue number | 19 |
DOIs | |
State | Published - 21 May 2017 |
Bibliographical note
Publisher Copyright:© 2017 The Royal Society of Chemistry.