Abstract
All isolated solutions of the cyclic-n polynomial equations are not known for larger dimensions than 11. We exploit two types of symmetric structures in the cyclic-n polynomial to compute all isolated nonsingular solutions of the equations efficiently by the polyhedral homotopy continuation method and to verify the correctness of the generated approximate solutions. Numerical results on the cyclic-8 to the cyclic-12 polynomial equations, including their solution information, are given.
Original language | English |
---|---|
Pages (from-to) | 83-97 |
Number of pages | 15 |
Journal | Journal of Computational and Applied Mathematics |
Volume | 152 |
Issue number | 1-2 |
DOIs | |
State | Published - 1 Mar 2003 |
Bibliographical note
Funding Information:Research supported by KRF 2001-015-DP0023.
Keywords
- Homotopy continuation methods
- Nonlinear programming
- Systems of equations