Computer-aided discovery of connected metal-organic frameworks

Ohmin Kwon, Jin Yeong Kim, Sungbin Park, Jae Hwa Lee, Junsu Ha, Hyunsoo Park, Hoi Ri Moon, Jihan Kim

Research output: Contribution to journalArticlepeer-review

75 Scopus citations


Composite metal-organic frameworks (MOFs) tend to possess complex interfaces that prevent facile and rational design. Here we present a joint computational/experimental workflow that screens thousands of MOFs and identifies the optimal MOF pairs that can seamlessly connect to one another by taking advantage of the fact that the metal nodes of one MOF can form coordination bonds with the linkers of the second MOF. Six MOF pairs (HKUST-1@MOF-5, HKUST-1@IRMOF-18, UiO-67@HKUST-1, PCN-68@MOF-5, UiO-66@MIL-88B(Fe) and UiO-67@MIL-88C(Fe)) yielded from our theoretical predictions were successfully synthesized, leading to clean single crystalline MOF@MOF, demonstrating the power of our joint workflow. Our work can serve as a starting point to accelerate the discovery of novel MOF composites that can potentially be used for many different applications.

Original languageEnglish
Article number3620
JournalNature Communications
Issue number1
StatePublished - 1 Dec 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).


Dive into the research topics of 'Computer-aided discovery of connected metal-organic frameworks'. Together they form a unique fingerprint.

Cite this