Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: In vivo and in vitro studies

Hye Jin Kwon, Ji Young Chung, Ji Yeon Kim, Oran Kwon

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Carbohydrate digestion by α-glucosidase and subsequent glucose uptake at the brush border are critical for postprandial blood glucose control. Any specific inhibitors are useful as hyperglycemia modulating agents. In this study, it was postulated that an array of active components in mulberry leaf extract (MLE) may provide higher potency in inhibiting intestinal glucose absorption compared to the single component 1-deoxynojirimycin (DNJ), which is recognized as a promising inhibitor of intestinal glucose absorption. Both MLE and DNJ were active in inhibiting α-glucosidase. However, in Caco-2 cells, only MLE showed significant inhibition of 2-deoxyglucose uptake, whereas DNJ was ineffective. For glucose loading, co-administration of MLE resulted in potent inhibitions of glucose responses compared to those by DNJ in Sprague Dawley (SD) rats, but this was not found for maltose loading. These novel findings add evidence that the unabsorbed phytochemicals in MLE compete with glucose for intestinal glucose transporters, but DNJ itself does not. We also evaluated the timing of MLE consumption. By administering MLE for 30 min before glucose loading, the incremental area under the curve (IAUC) was significantly lowered in the rats, as compared to a simultaneously administered group. Similarly, cellular glucose uptake was significantly reduced in Caco-2 cells following pretreatment.

Original languageEnglish
Pages (from-to)3014-3019
Number of pages6
JournalJournal of Agricultural and Food Chemistry
Volume59
Issue number7
DOIs
StatePublished - 13 Apr 2011

Fingerprint

Dive into the research topics of 'Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: In vivo and in vitro studies'. Together they form a unique fingerprint.

Cite this