TY - JOUR
T1 - Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects
T2 - In vivo and in vitro studies
AU - Kwon, Hye Jin
AU - Chung, Ji Young
AU - Kim, Ji Yeon
AU - Kwon, Oran
PY - 2011/4/13
Y1 - 2011/4/13
N2 - Carbohydrate digestion by α-glucosidase and subsequent glucose uptake at the brush border are critical for postprandial blood glucose control. Any specific inhibitors are useful as hyperglycemia modulating agents. In this study, it was postulated that an array of active components in mulberry leaf extract (MLE) may provide higher potency in inhibiting intestinal glucose absorption compared to the single component 1-deoxynojirimycin (DNJ), which is recognized as a promising inhibitor of intestinal glucose absorption. Both MLE and DNJ were active in inhibiting α-glucosidase. However, in Caco-2 cells, only MLE showed significant inhibition of 2-deoxyglucose uptake, whereas DNJ was ineffective. For glucose loading, co-administration of MLE resulted in potent inhibitions of glucose responses compared to those by DNJ in Sprague Dawley (SD) rats, but this was not found for maltose loading. These novel findings add evidence that the unabsorbed phytochemicals in MLE compete with glucose for intestinal glucose transporters, but DNJ itself does not. We also evaluated the timing of MLE consumption. By administering MLE for 30 min before glucose loading, the incremental area under the curve (IAUC) was significantly lowered in the rats, as compared to a simultaneously administered group. Similarly, cellular glucose uptake was significantly reduced in Caco-2 cells following pretreatment.
AB - Carbohydrate digestion by α-glucosidase and subsequent glucose uptake at the brush border are critical for postprandial blood glucose control. Any specific inhibitors are useful as hyperglycemia modulating agents. In this study, it was postulated that an array of active components in mulberry leaf extract (MLE) may provide higher potency in inhibiting intestinal glucose absorption compared to the single component 1-deoxynojirimycin (DNJ), which is recognized as a promising inhibitor of intestinal glucose absorption. Both MLE and DNJ were active in inhibiting α-glucosidase. However, in Caco-2 cells, only MLE showed significant inhibition of 2-deoxyglucose uptake, whereas DNJ was ineffective. For glucose loading, co-administration of MLE resulted in potent inhibitions of glucose responses compared to those by DNJ in Sprague Dawley (SD) rats, but this was not found for maltose loading. These novel findings add evidence that the unabsorbed phytochemicals in MLE compete with glucose for intestinal glucose transporters, but DNJ itself does not. We also evaluated the timing of MLE consumption. By administering MLE for 30 min before glucose loading, the incremental area under the curve (IAUC) was significantly lowered in the rats, as compared to a simultaneously administered group. Similarly, cellular glucose uptake was significantly reduced in Caco-2 cells following pretreatment.
UR - http://www.scopus.com/inward/record.url?scp=79953858559&partnerID=8YFLogxK
U2 - 10.1021/jf103463f
DO - 10.1021/jf103463f
M3 - Article
C2 - 21370820
AN - SCOPUS:79953858559
SN - 0021-8561
VL - 59
SP - 3014
EP - 3019
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 7
ER -