Clustersurface interaction: From soft landing to implantation

Vladimir N. Popok, Ingo Barke, Eleanor E.B. Campbell, Karl Heinz Meiwes-Broer

Research output: Contribution to journalReview articlepeer-review

226 Scopus citations

Abstract

The current paper presents a state-of-the-art review in the field of interaction of atomic and molecular clusters with solids. We do not attempt to overview the entire broad field, but rather concentrate on the impact phenomena: how the physics of the clustersurface interaction depends on the kinetic energy and what effects are induced under different energetic regimes. The review starts with an introduction to the field and a short history of cluster beam development. Then fundamental physical aspects of cluster formation and the most common methods for the production of cluster beams are overviewed. For clustersurface interactions, one of the important scenarios is the low-energy regime where the kinetic energy per atom of the accelerated cluster stays well below the binding (cohesive) energy of the cluster constituents. This case is often called soft landing: the deposition typically does not induce cluster fragmentation, i.e. the clusters tend to preserve their composition but not necessarily their shape. Specific characteristic phenomena for soft landing of clusters are summarized. They pave the way for the use of cluster beams in the formation of nanoparticle arrays with required properties for utilization in optics and electronics, as magnetic media and catalysts, in nanobiology and nanomedicine. We pay considerable attention to phenomena occurring on impact of clusters with increased kinetic energies. In particular, we discuss the physics of the intermediate regime between deposition and implantation, i.e. slight cluster embedding into the surfaceotherwise known as cluster pinning. At higher impact energies, cluster structure is lost and the impact results in local damage of the surface and often in crater and hillock formation. We consider both experimental data and theoretical simulations and discuss mechanisms of these phenomena. Some analogies to the impact of macroscopic objects, e.g. meteorites are shown. This part of the paper also overviews the research on surface sputtering under high-fluence cluster beam treatment and the existing models explaining how this phenomenon can be used for efficient smoothing of surfaces on the macroscopic scale. Several examples of successful applications of the cluster beam technique for polishing of surfaces are given. We also discuss how the physical sputtering can be combined with reactive accelerated cluster erosion. The latter can be an efficient tool for dry etching of surfaces on the nanoscale. Specificity of cluster (multicomponent projectile) stopping in matter and formation of radiation damage under keV-to-MeV energy implantations are analyzed. The part about fundamental aspects of cluster implantation is followed by several examples of practical applications of keV-energy cluster ion beams. This includes ultra-shallow doping of semiconductors and formation of ultrathin insulating layers. A few examples of MeV-energy cluster implantation, leading to the formation of nanosize hillocks or pillars on the surface as well as to local phase transitions (for instance, graphite-to-diamond) are also discussed. The review is finalized by an outlook on the future development of cluster beam research.

Original languageEnglish
Pages (from-to)347-377
Number of pages31
JournalSurface Science Reports
Volume66
Issue number10
DOIs
StatePublished - Oct 2011

Keywords

  • Atomic and molecular clusters
  • Cluster deposition
  • Cluster implantation
  • Cluster-induced sputtering
  • Clustersurface interaction

Fingerprint

Dive into the research topics of 'Clustersurface interaction: From soft landing to implantation'. Together they form a unique fingerprint.

Cite this