TY - JOUR
T1 - CLOCK Genetic Variations Are Associated With Age-Related Changes in Sleep Duration and Brain Volume
AU - Kim, Song E.
AU - Kim, Soriul
AU - Kim, Hyeon Jin
AU - Kim, Regina Eun Young
AU - Kim, Sol Ah
AU - Shin, Chol
AU - Lee, Hyang Woon
N1 - Publisher Copyright:
© The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
PY - 2022/9/1
Y1 - 2022/9/1
N2 - BACKGROUND: Although a connection between sleep disruption and brain aging has been documented, biological mechanisms need to be further clarified. Intriguingly, aging is associated with circadian rhythm and/or sleep dysfunction in a key gene regulating circadian rhythm, Circadian Locomotor Output Cycles Kaput (CLOCK), has been linked to both aging-related sleep disturbances and neurodegenerative diseases. This study aims to investigate how CLOCK genetic variation associates with sleep duration changes and/or volumetric brain alteration. METHODS: This population-based cross-sectional study used data from the Korean Genome Epidemiology Study and analyzed sleep characteristics and genetic and brain imaging data in 2 221 participants (mean 58.8 ± 6.8 years, 50.2% male). Eleven single-nucleotide polymorphisms (SNPs) in CLOCK were analyzed using PLINK software v1.09 to test for their association with sleep duration and brain volume. Haplotype analysis was performed by using pair-wise linkage disequilibrium of CLOCK polymorphisms, and multivariate analysis of covariance was for statistical analysis. RESULTS: Decreased sleep duration was associated with several SNPs in CLOCK intronic regions, with the highest significance for rs10002541 (p = 1.58 × 10-5). Five SNPs with the highest significance (rs10002541, rs6850524, rs4580704, rs3805151, rs3749474) revealed that CGTCT was the most prevalent. In the major CGTCT haplotype, decreased sleep duration over time was associated with lower cortical volumes predominantly in frontal and parietal regions. Less common haplotypes (GCCTC/CGTTC) had shorter sleep duration and more decreases in sleep duration over 8 years, which revealed smaller total and gray matter volumes, especially in frontal and temporal regions of the left hemisphere. CONCLUSION: CLOCK genetic variations could be involved in age-related sleep and brain volume changes.
AB - BACKGROUND: Although a connection between sleep disruption and brain aging has been documented, biological mechanisms need to be further clarified. Intriguingly, aging is associated with circadian rhythm and/or sleep dysfunction in a key gene regulating circadian rhythm, Circadian Locomotor Output Cycles Kaput (CLOCK), has been linked to both aging-related sleep disturbances and neurodegenerative diseases. This study aims to investigate how CLOCK genetic variation associates with sleep duration changes and/or volumetric brain alteration. METHODS: This population-based cross-sectional study used data from the Korean Genome Epidemiology Study and analyzed sleep characteristics and genetic and brain imaging data in 2 221 participants (mean 58.8 ± 6.8 years, 50.2% male). Eleven single-nucleotide polymorphisms (SNPs) in CLOCK were analyzed using PLINK software v1.09 to test for their association with sleep duration and brain volume. Haplotype analysis was performed by using pair-wise linkage disequilibrium of CLOCK polymorphisms, and multivariate analysis of covariance was for statistical analysis. RESULTS: Decreased sleep duration was associated with several SNPs in CLOCK intronic regions, with the highest significance for rs10002541 (p = 1.58 × 10-5). Five SNPs with the highest significance (rs10002541, rs6850524, rs4580704, rs3805151, rs3749474) revealed that CGTCT was the most prevalent. In the major CGTCT haplotype, decreased sleep duration over time was associated with lower cortical volumes predominantly in frontal and parietal regions. Less common haplotypes (GCCTC/CGTTC) had shorter sleep duration and more decreases in sleep duration over 8 years, which revealed smaller total and gray matter volumes, especially in frontal and temporal regions of the left hemisphere. CONCLUSION: CLOCK genetic variations could be involved in age-related sleep and brain volume changes.
KW - Brain volume
KW - CLOCK gene
KW - Sleep duration
UR - http://www.scopus.com/inward/record.url?scp=85137138548&partnerID=8YFLogxK
U2 - 10.1093/gerona/glab365
DO - 10.1093/gerona/glab365
M3 - Article
C2 - 34908110
AN - SCOPUS:85137138548
SN - 1758-535X
VL - 77
SP - 1907
EP - 1914
JO - The journals of gerontology. Series A, Biological sciences and medical sciences
JF - The journals of gerontology. Series A, Biological sciences and medical sciences
IS - 9
ER -