Abstract
Cinchonine (CN) has been known to exert antimalarial, antiplatelet, and antiobesity effects. It was also recently reported to inhibit transforming growth factor β-activated kinase 1 (TAK1) and protein kinase B (AKT) through binding to tumor necrosis factor receptor-associated factor 6 (TRAF6). However, its role in bone metabolism remains largely unknown. Here, we showed that CN inhibits osteoclast differentiation with decreased expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key determinant of osteoclastogenesis. Immunoblot and quantitative real-time polymerase chain reaction analysis as well as the reporter assay revealed that CN inhibits nuclear factor-κB and activator protein-1 by regulating TAK1. CN also attenuated the activation of AKT, cyclic AMP response element-binding protein, and peroxisome proliferator-activated receptor-γ coactivator 1β (PGC1β), an essential regulator of mitochondrial biogenesis. Collectively, these results suggested that CN may inhibit TRAF6-mediated TAK1 and AKT activation, which leads to downregulation of NFATc1 and PGC1β resulting in the suppression of osteoclast differentiation. Interestingly, CN not only inhibited the maturation and resorption function of differentiated osteoclasts but also promoted osteoblast differentiation. Furthermore, CN protected lipopolysaccharide- and ovariectomy-induced bone destruction in mouse models, suggesting its therapeutic potential for treating inflammation-induced bone diseases and postmenopausal osteoporosis.
Original language | English |
---|---|
Pages (from-to) | 1854-1865 |
Number of pages | 12 |
Journal | Journal of Cellular Physiology |
Volume | 236 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2021 |
Bibliographical note
Funding Information:This study was supported by grants (Grant Nos. 2017R1A2B2012435, 2019R1C1C1011198, and 2019R1A5A6099645) of the National Research Foundation funded by the Korean Ministry of Science and ICT.
Funding Information:
This study was supported by grants (Grant Nos. 2017R1A2B2012435, 2019R1C1C1011198, and 2019R1A5A6099645) of the National Research Foundation funded by the Korean Ministry of Science and ICT.
Publisher Copyright:
© 2020 Wiley Periodicals LLC
Keywords
- AKT
- TAK1
- bone
- cinchonine
- osteoblast
- osteoclast