Chromium-rich CrxIr1−xO2 wire-in-tube alloys for boosted water oxidation with long standing electrocatalytic activity

Dasol Jin, Jisoo Kang, Sampath Prabhakaran, Youngmi Lee, Myung Hwa Kim, Do Hwan Kim, Chongmok Lee

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Chromium-iridium oxide (CrxIr1−xO2) alloys with a wire-in-tube morphology were primally prepared as highly efficient electrocatalysts for the oxygen evolution reaction (OER) via a simple electrospinning method. The synthetic processes with an optimized annealing temperature and a rate of calcination process were finely controlled to shape a distinct double-shell nanotube architecture. A low iridium-content oxide alloy (CrxIr1−xO2 with Cr : Ir atomic ratio of 62 : 38) derived from electrospinning and the post-calcination process was the first to reveal the remarkable OER performances in alkaline solution. Moreover, it maintained the performance throughout the long-term chronopotentiometry test at a constant current density of 10 mA cm−2 without any deterioration. In particular, density functional theory (DFT) calculations prove that the Cr-rich catalyst improves the binding of OOH species on the (110) facet of the CrxIr1−xO2 surface and lowers the Gibbs free energy barrier of the OER process with superior electrocatalytic activity based on the mechanistic inspection of the electrochemical processes.

Original languageEnglish
Pages (from-to)13803-13813
Number of pages11
JournalJournal of Materials Chemistry A
Volume10
Issue number26
DOIs
StatePublished - 31 May 2022

Bibliographical note

Publisher Copyright:
© 2022 The Royal Society of Chemistry

Fingerprint

Dive into the research topics of 'Chromium-rich CrxIr1−xO2 wire-in-tube alloys for boosted water oxidation with long standing electrocatalytic activity'. Together they form a unique fingerprint.

Cite this