Abstract
Background: Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. Methods: We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. Findings: Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20–1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82–3·29) for intracranial haemorrhage and 1·23 (1·08–1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08–6·72] for intracranial haemorrhage vs 1·47 [1·19–1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36–9·05] vs 1·43 [1·07–1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69–15·81] vs 1·86 [1·23–1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 27 intracranial haemorrhages [17–41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46–108] per 1000 patient-years vs 39 intracranial haemorrhages [21–67] per 1000 patient-years). Interpretation: In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden. Funding: British Heart Foundation and UK Stroke Association.
Original language | English |
---|---|
Pages (from-to) | 653-665 |
Number of pages | 13 |
Journal | The Lancet Neurology |
Volume | 18 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2019 |
Access to Document
Fingerprint
Dive into the research topics of 'Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack: a pooled analysis of individual patient data from cohort studies'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack : a pooled analysis of individual patient data from cohort studies. / Wilson, Duncan; Ambler, Gareth; Lee, Keon Joo et al.
In: The Lancet Neurology, Vol. 18, No. 7, 07.2019, p. 653-665.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Cerebral microbleeds and stroke risk after ischaemic stroke or transient ischaemic attack
T2 - a pooled analysis of individual patient data from cohort studies
AU - Wilson, Duncan
AU - Ambler, Gareth
AU - Lee, Keon Joo
AU - Lim, Jae Sung
AU - Shiozawa, Masayuki
AU - Koga, Masatoshi
AU - Li, Linxin
AU - Lovelock, Caroline
AU - Chabriat, Hugues
AU - Hennerici, Michael
AU - Wong, Yuen Kwun
AU - Mak, Henry Ka Fung
AU - Prats-Sánchez, Luis
AU - Martínez-Domeño, Alejandro
AU - Inamura, Shigeru
AU - Yoshifuji, Kazuhisa
AU - Arsava, Ethem Murat
AU - Horstmann, Solveig
AU - Purrucker, Jan
AU - Lam, Bonnie Yin Ka
AU - Wong, Adrian
AU - Kim, Young Dae
AU - Song, Tae Jin
AU - Schrooten, Maarten
AU - Lemmens, Robin
AU - Eppinger, Sebastian
AU - Gattringer, Thomas
AU - Uysal, Ender
AU - Tanriverdi, Zeynep
AU - Bornstein, Natan M.
AU - Assayag, Einor Ben
AU - Hallevi, Hen
AU - Tanaka, Jun
AU - Hara, Hideo
AU - Coutts, Shelagh B.
AU - Hert, Lisa
AU - Polymeris, Alexandros
AU - Seiffge, David J.
AU - Lyrer, Philippe
AU - Algra, Ale
AU - Kappelle, Jaap
AU - Al-Shahi Salman, Rustam
AU - Jäger, Hans R.
AU - Lip, Gregory Y.H.
AU - Mattle, Heinrich P.
AU - Panos, Leonidas D.
AU - Mas, Jean Louis
AU - Legrand, Laurence
AU - Karayiannis, Christopher
AU - Phan, Thanh
AU - Gunkel, Sarah
AU - Christ, Nicolas
AU - Abrigo, Jill
AU - Leung, Thomas
AU - Chu, Winnie
AU - Chappell, Francesca
AU - Makin, Stephen
AU - Hayden, Derek
AU - Williams, David J.
AU - Kooi, M. Eline
AU - van Dam-Nolen, Dianne H.K.
AU - Barbato, Carmen
AU - Browning, Simone
AU - Wiegertjes, Kim
AU - Tuladhar, Anil M.
AU - Maaijwee, Noortje
AU - Guevarra, Christine
AU - Yatawara, Chathuri
AU - Mendyk, Anne Marie
AU - Delmaire, Christine
AU - Köhler, Sebastian
AU - van Oostenbrugge, Robert
AU - Zhou, Ying
AU - Xu, Chao
AU - Hilal, Saima
AU - Gyanwali, Bibek
AU - Chen, Christopher
AU - Lou, Min
AU - Staals, Julie
AU - Bordet, Régis
AU - Kandiah, Nagaendran
AU - de Leeuw, Frank Erik
AU - Simister, Robert
AU - van der Lugt, Aad
AU - Kelly, Peter J.
AU - Wardlaw, Joanna M.
AU - Soo, Yannie
AU - Fluri, Felix
AU - Srikanth, Velandai
AU - Calvet, David
AU - Jung, Simon
AU - Kwa, Vincent I.H.
AU - Engelter, Stefan T.
AU - Peters, Nils
AU - Smith, Eric E.
AU - Yakushiji, Yusuke
AU - Orken, Dilek Necioglu
AU - Fazekas, Franz
AU - Thijs, Vincent
AU - Heo, Ji Hoe
AU - Mok, Vincent
AU - Veltkamp, Roland
AU - Ay, Hakan
AU - Imaizumi, Toshio
AU - Gomez-Anson, Beatriz
AU - Lau, Kui Kai
AU - Jouvent, Eric
AU - Rothwell, Peter M.
AU - Toyoda, Kazunori
AU - Bae, Hee Joon
AU - Marti-Fabregas, Joan
AU - Werring, David J.
AU - Harkness, Kirsty
AU - Shaw, Louise
AU - Sword, Jane
AU - Mohd Nor, Azlisham
AU - Sharma, Pankaj
AU - Kelly, Deborah
AU - Harrington, Frances
AU - Randall, Marc
AU - Smith, Matthew
AU - Mahawish, Karim
AU - Elmarim, Abduelbaset
AU - Esisi, Bernard
AU - Cullen, Claire
AU - Nallasivam, Arumug
AU - Price, Christopher
AU - Barry, Adrian
AU - Roffe, Christine
AU - Coyle, John
AU - Hassan, Ahamad
AU - Birns, Jonathan
AU - Cohen, David
AU - Sekaran, Lakshmanan
AU - Parry-Jones, Adrian
AU - Parry, Anthea
AU - Hargroves, David
AU - Proschel, Harald
AU - Datta, Prabel
AU - Darawil, Khaled
AU - Manoj, Aravindakshan
AU - Burn, Mathew
AU - Patterson, Chris
AU - Giallombardo, Elio
AU - Smyth, Nigel
AU - Mansoor, Syed
AU - Anwar, Ijaz
AU - Marsh, Rachel
AU - Ispoglou, Sissi
AU - Chadha, Dinesh
AU - Prabhakaran, Mathuri
AU - Meenakishundaram, Sanjeevikumar
AU - O'Connell, Janice
AU - Scott, Jon
AU - Krishnamurthy, Vinodh
AU - Aghoram, Prasanna
AU - McCormick, Michael
AU - Sprigg, Nikola
AU - O'Mahony, Paul
AU - Cooper, Martin
AU - Choy, Lillian
AU - Wilkinson, Peter
AU - Leach, Simon
AU - Caine, Sarah
AU - Burger, Ilse
AU - Gunathilagan, Gunaratam
AU - Guyler, Paul
AU - Emsley, Hedley
AU - Davis, Michelle
AU - Manawadu, Dulka
AU - Pasco, Kath
AU - Mamun, Maam
AU - Luder, Robert
AU - Sajid, Mahmud
AU - Okwera, James
AU - Warburton, Elizabeth
AU - Saastamoinen, Kari
AU - England, Timothy
AU - Putterill, Janet
AU - Flossman, Enrico
AU - Power, Michael
AU - Dani, Krishna
AU - Mangion, David
AU - Suman, Appu
AU - Corrigan, John
AU - Lawrence, Enas
AU - Vahidassr, Djamil
AU - Shakeshaft, Clare
AU - Brown, Martin
AU - Charidimou, Andreas
AU - Cohen, Hannah
AU - Banerjee, Gargi
AU - Houlden, Henry
AU - White, Mark
AU - Yousry, Tarek
AU - Flossmann, Enrico
AU - Muir, Keith
AU - El-Koussy, Marwan
AU - Gratz, Pascal
AU - Molad, Jeremy
AU - Korczyn, Amos
AU - Kliper, Efrat
AU - Maeder, Philippe
AU - Gass, Achim
AU - Pachai, Chahin
AU - Bracoub, Luc
AU - Douste-Blazy, Marie Yvonne
AU - Fratacci, Marie Dominique
AU - Vicaut, Eric
AU - Sato, Shoichiro
AU - Miwa, Kaori
AU - Fujita, Kyohei
AU - Ide, Toshihiro
AU - Ma, Henry
AU - Ly, John
AU - Singhal, Shahoo
AU - Chandra, Ronil
AU - Slater, Lee Anne
AU - Soufan, Cathy
AU - Moran, Christopher
AU - Traenka, Christopher
AU - Thilemann, Sebastian
AU - Fladt, Joachim
AU - Gensicke, Henrik
AU - Bonati, Leo
AU - Kim, Beom Joon
AU - Han, Moon Ku
AU - Kang, Jihoon
AU - Ko, Eunbin
AU - Yang, Mi Hwa
AU - Jang, Myung Suk
AU - Murphy, Sean
AU - Carty, Fiona
AU - Akijian, Layan
AU - Thornton, John
AU - Schembri, Mark
AU - Douven, Elles
AU - Delgado-Mederos;, Raquel
AU - Marín, Rebeca
AU - Camps-Renom, Pol
AU - Guisado-Alonso, Daniel
AU - Nuñez, Fidel
AU - Medrano-Martorell, Santiago
AU - Merino, Elisa
AU - Iida, Kotaro
AU - Ikeda, Syuhei
AU - Nishihara, Masashi
AU - Irie, Hiroyuki
AU - Demirelli, Derya Selcuk
AU - Medanta, Jayesh Modi
AU - Zerna, Charlotte
AU - Hernández, Maria Valdés
AU - Armitage, Paul
AU - Heye, Anna
AU - Muñoz-Maniega, Susana
AU - Sakka, Eleni
AU - Thrippleton, Michael
AU - Dennis, Martin
AU - Beigneux, Ysoline
AU - Silva, Mauro
AU - Venketasubramanian, Narayanaswamy
AU - Ho, Shu Leung
AU - Cheung, Raymond Tak Fai
AU - Chan, Koon Ho
AU - Teo, Kay Cheong
AU - Hui, Edward
AU - Kwan, Joseph Shiu Kwong
AU - Chang, Richard
AU - Tse, Man Yu
AU - Hoi, Chu Peng
AU - Chan, Chung Yan
AU - Chan, Oi Ling
AU - Cheung, Ryan Hoi Kit
AU - Wong, Edmund Ka Ming
AU - Leung, Kam Tat
AU - Tsang, Suk Fung
AU - Ip, Hing Lung
AU - Ma, Sze Ho
AU - Ma, Karen
AU - Fong, Wing Chi
AU - Li, Siu Hung
AU - Li, Richard
AU - Ng, Ping Wing
AU - Wong, Kwok Kui
AU - Liu, Wenyan
AU - Wong, Lawrence
AU - Ramos, Lino
AU - De Schryver, Els
AU - Jöbsis, Joost
AU - van der Sande, Jaap
AU - Brouwers, Paul
AU - Roos, Yvo
AU - Stam, Jan
AU - Bakker, Stef
AU - Verbiest, Henk
AU - Schoonewille, Wouter
AU - Linn, Cisca
AU - Hertzberger, Leopold
AU - van Gemert, Maarten
AU - Berntsen, Paul
AU - Hendrikse, Jeroen
AU - Nederkoorn, Paul
AU - Mess, Werner
AU - Koudstaal, Peter
AU - Leff, Alexander
AU - Ward, Nicholas
AU - Nachev, Parashkev
AU - Perry, Richard
AU - Ozkan, Hatice
AU - Mitchell, John
N1 - Funding Information: Funding for the included cohort studies was provided by the British Heart Foundation, Stroke Association, UCLH National Institute of Health Research (NIHR) Biomedical Research Centre, Wellcome Trust, Health Research Board Ireland, NIHR Biomedical Research Centre (Oxford, UK), Canadian Institutes of Health Research, Pfizer Cardiovascular Research award, Basel Stroke Funds, Science Funds Rehabilitation Felix-Platter-Hospital, Neurology Research Pool University Hospital Basel, Bayer AG, Fondo de Investigaciones Sanitarias Instituto de Salud Carlos III (FI12/00296; RETICS INVICTUS PLUS RD16/0019/0010; FEDER), Imperial College London NIHR Biomedical Research Centre, Dutch Heart Foundation, Servier, Association de Recherche en Neurologie Vasculaire and RHU TRT_cSVD (ANR-16-RHUS-004), Vidi innovational grant from The Netherlands ZonMw, Chest Heart Stroke Scotland, Medical Research Council, Fondation Leducq, The Row Fogo Charitable Trust, National Institute of Health (USA), Adriana van Rinsum-Ponsen Stichting, Japan Agency for Medical Research and Development (AMED), Ministry of Health, Labour and Welfare (Japan), and National Cerebral and Cardiovascular Center, Health and Medical Research Grant, Singapore National Medical Research Council, and Dutch Heart Foundation. Funding Information: MK reports grants from the Ministry of Health, Labour and Welfare, Japan, and from the National Cerebral and Cardiovascular Center during the conduct of the study; and speaker honoraria from Bayer Yakuhin, Daiichi-Sankyo Company, and Bristol-Myers Squibb (BMS)/Pfizer. HC reports participation in the steering committee for a clinical trial supported by Servier and was a consultant for Hovid Inc. EMA reports personal fees from Pfizer, Boehringer Ingelheim, Nutricia, Abbott, and Sanofi, outside the submitted work. JP reports personal fees from Boehringer Ingelheim and Akcea and personal fees and non-financial support from Pfizer outside the submitted work. EBA reports grants from US–Israel Bi-national Science Foundation, The American Federation for Aging Research, and The Israeli Chief Scientist, Ministry of Health, during the conduct of the study. SBC reports grants from the Canadian Institute of Health Research and a Pfizer Cardiovascular award during the conduct of the study. DJS reports other funding from Bayer and from BMS/Pfizer outside the submitted work. PL reports other funding from Daiichi-Sankyo, Bayer, and Boehringer Ingelheim, outside the submitted work. RA-SS reports grants from the British Heart Foundation, The Stroke Association, and Chest Heart & Stroke Scotland outside the submitted work. GYHL reports consultancy for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Microlife, and Daiichi-Sankyo; and speaker honoraria from Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife, Roche, and Daiichi-Sankyo. HPM reports personal fees from Neuravi/Cerenovus, Medtronic, Bayer, Daiichi-Sankyo, and Servier outside the submitted work. DH reports grants from University College Dublin Newman Fellowship supported Bayer during the conduct of the study. MEK reports grants from the Center for Translational Molecular Medicine during the conduct of the study. AMT reports grants from the Dutch Heart Foundation during the conduct of the study. AvdL reports grants from the Center for Translation Molecular Medicine and Dutch Heart Foundation during the conduct of the study. JMW reports grants from Wellcome Trust, Chest Heart Stroke Scotland, and Row Fogo Charitable Trust during the conduct of the study. YS reports a grant from Health and Medical Research Fund. VIHK reports grants from the Netherlands Heart Foundation (grant 2001B071) during the conduct of the study. STE reports grants from Daiichi-Sankyo, Bayer, Pfizer, and Swiss Heart Foundation during the conduct of the study; other funding from Daiichi-Sankyo, Mindmaze, and Stago; and grants from the Swiss National Science Foundation outside the submitted work. NP reports other funding from Daiichi-Sankyo, Bayer, and Boehringer Ingelheim outside the submitted work. EES reports personal fees from Portola Pharmaceuticals and Alnylam Pharmaceuticals outside the submitted work. VT reports personal fees and non-financial support from Boehringer Ingelheim and personal fees from Bayer, Pfizer/BMS, and Amgen and Medtronic outside the submitted work. RV reports grants and personal fees from Bayer, Boehringer Ingelheim, BMS, Daiichi-Sankyo, and Medtronic; and personal fees from Morphosys and Amgen outside the submitted work. HA reports grants from National Institutes of Health during the conduct of the study. PMR reports personal fees from Bayer outside the submitted work. KT reports personal fees from Daiichi-Sankyo, Bayer Yakuhin, BMS, and Nippon Boehringer Ingelheim outside the submitted work. DJWe reports personal fees from Bayer outside the submitted work. All other authors declare no competing interests. Publisher Copyright: © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
PY - 2019/7
Y1 - 2019/7
N2 - Background: Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. Methods: We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. Findings: Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20–1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82–3·29) for intracranial haemorrhage and 1·23 (1·08–1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08–6·72] for intracranial haemorrhage vs 1·47 [1·19–1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36–9·05] vs 1·43 [1·07–1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69–15·81] vs 1·86 [1·23–1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 27 intracranial haemorrhages [17–41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46–108] per 1000 patient-years vs 39 intracranial haemorrhages [21–67] per 1000 patient-years). Interpretation: In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden. Funding: British Heart Foundation and UK Stroke Association.
AB - Background: Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute risk of intracranial haemorrhage than ischaemic stroke. Methods: We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number CRD42016036602. Findings: Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1·34 years [IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral microbleeds to those without was 1·35 (95% CI 1·20–1·50) for the composite outcome of intracranial haemorrhage and ischaemic stroke; 2·45 (1·82–3·29) for intracranial haemorrhage and 1·23 (1·08–1·40) for ischaemic stroke. The aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4·55 [95% CI 3·08–6·72] for intracranial haemorrhage vs 1·47 [1·19–1·80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5·52 [3·36–9·05] vs 1·43 [1·07–1·91]; and for ≥20 cerebral microbleeds, aHR 8·61 [4·69–15·81] vs 1·86 [1·23–1·82]). However, irrespective of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 27 intracranial haemorrhages [17–41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes [46–108] per 1000 patient-years vs 39 intracranial haemorrhages [21–67] per 1000 patient-years). Interpretation: In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral microbleed presence, antomical distribution, or burden. Funding: British Heart Foundation and UK Stroke Association.
UR - http://www.scopus.com/inward/record.url?scp=85067010802&partnerID=8YFLogxK
U2 - 10.1016/S1474-4422(19)30197-8
DO - 10.1016/S1474-4422(19)30197-8
M3 - Article
C2 - 31130428
AN - SCOPUS:85067010802
SN - 1474-4422
VL - 18
SP - 653
EP - 665
JO - The Lancet Neurology
JF - The Lancet Neurology
IS - 7
ER -