TY - GEN
T1 - Carrier transport and low temperature device properties of Cu 2ZnSnSe4 thin-films with different Cu and Zn/Sn ratio
AU - Jeong, Ah Reum
AU - Jo, William
AU - Lee, Jin Woo
AU - Kim, Jin Young
PY - 2012
Y1 - 2012
N2 - Earth abundant and non-toxic quaternary semiconductor Cu 2ZnSnSe4 (CZTSe) is regarded as one of the alternatives for solar cell applications due to low cost and competitive photovoltaic performance. In this study, CZTSe thin-films with different Cu and Zn/Sn composition were investigated. On the other hand, for improving solar cell properties, it is important to understand from electron-hole transport to solar cell performance. The carriers in photovoltaic chalcopyrite thin-films behave differently in the vicinity of grain boundaries, which eventually effects on efficiency of the solar cell. Kelvin probe force microscopy measured local surface potential which indicates positive in the vicinity of grain boundaries in a Cu-poor CZTSe not a Cu-rich thin-film. Local current was measured by conductive atomic force microscopy under external bias reveals that carrier polarity changes due to bias direction. The electron-hole transport effects on a solar cell device which is influenced by the thin-film composition. The only stoichiometric (Cu/(Zn+Sn)=0.8, Zn/Sn=1.2) CZTSe thin-film reveals 1.5% of conversion efficiency and distinctive solar cell properties as a function of temperature. The conversion efficiency as well as Jsc and V oc are decreased under 200 K, which is particular on the contrary to those of Cu(In,Ga)Se2 thin-film. For improving CZTSe solar cell performance, it is essential to understand compositional effect and local electrical characteristics on CZTSe.
AB - Earth abundant and non-toxic quaternary semiconductor Cu 2ZnSnSe4 (CZTSe) is regarded as one of the alternatives for solar cell applications due to low cost and competitive photovoltaic performance. In this study, CZTSe thin-films with different Cu and Zn/Sn composition were investigated. On the other hand, for improving solar cell properties, it is important to understand from electron-hole transport to solar cell performance. The carriers in photovoltaic chalcopyrite thin-films behave differently in the vicinity of grain boundaries, which eventually effects on efficiency of the solar cell. Kelvin probe force microscopy measured local surface potential which indicates positive in the vicinity of grain boundaries in a Cu-poor CZTSe not a Cu-rich thin-film. Local current was measured by conductive atomic force microscopy under external bias reveals that carrier polarity changes due to bias direction. The electron-hole transport effects on a solar cell device which is influenced by the thin-film composition. The only stoichiometric (Cu/(Zn+Sn)=0.8, Zn/Sn=1.2) CZTSe thin-film reveals 1.5% of conversion efficiency and distinctive solar cell properties as a function of temperature. The conversion efficiency as well as Jsc and V oc are decreased under 200 K, which is particular on the contrary to those of Cu(In,Ga)Se2 thin-film. For improving CZTSe solar cell performance, it is essential to understand compositional effect and local electrical characteristics on CZTSe.
UR - http://www.scopus.com/inward/record.url?scp=84869429356&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2012.6318147
DO - 10.1109/PVSC.2012.6318147
M3 - Conference contribution
AN - SCOPUS:84869429356
SN - 9781467300643
T3 - Conference Record of the IEEE Photovoltaic Specialists Conference
SP - 2685
EP - 2687
BT - Program - 38th IEEE Photovoltaic Specialists Conference, PVSC 2012
T2 - 38th IEEE Photovoltaic Specialists Conference, PVSC 2012
Y2 - 3 June 2012 through 8 June 2012
ER -