Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms

Yoonji Joo, Eun Namgung, Hyeonseok Jeong, Ilhyang Kang, Jinsol Kim, Sohyun Oh, In Kyoon Lyoo, Sujung Yoon, Jaeuk Hwang

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.

Original languageEnglish
Article number22388
JournalScientific Reports
Volume13
Issue number1
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

Fingerprint

Dive into the research topics of 'Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms'. Together they form a unique fingerprint.

Cite this