TY - JOUR
T1 - Boronate-Based Fluorescence Probes for the Detection of Hydrogen Peroxide
AU - Lampard, Emma V.
AU - Sedgwick, Adam C.
AU - Sun, Xiaolong
AU - Filer, Katherine L.
AU - Hewins, Samantha C.
AU - Kim, Gyoungmi
AU - Yoon, Juyoung
AU - Bull, Steven D.
AU - James, Tony D.
N1 - Funding Information:
E.V.L. thanks the EPSRC Doctoral Training Centre in Sustainable Chemical Technologies: EP/G03768X/1 for a studentship. A.C.S would like to thank the EPSRC and the University of Bath for funding. T.D.J. wishes to thank the Royal Society for a Wolfson Research Merit Award. NMR characterization facilities were provided through the Chemical Characterization and Analysis Facility (CCAF) at the University of Bath (www.bath.ac.uk/ccaf). All data supporting this study are provided as supplementary information accompanying this paper.
Publisher Copyright:
© 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
PY - 2018/3
Y1 - 2018/3
N2 - In this work, we synthesized a series of boronate ester fluorescence probes (E)-4,4,5,5-tetramethyl-2-(4-styrylphenyl)-1,3,2-dioxaborolane (STBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)aniline (DSTBPin), (E)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)benzonitrile (CSTBPin), (E)-2-(4-(4-methoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (MSTBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)naphthalen-1-amine (NDSTBPin), and N,N-dimethyl-4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxazol-5-yl)aniline (DAPOX-BPin) for the detection of hydrogen peroxide (H2O2). DSTBPin and MSTBPin displayed an “Off–On” fluorescence response towards H2O2, owing to the loss of the intramolecular charge transfer (ICT) excited state. Whereas, CSTBPin displayed a decrease in fluorescence intensity in the presence of H2O2 owing to the introduction of an ICT excited state. STBPin, on the other hand, produced a small fluorescence decrease, indicating the importance of an electron-withdrawing or electron-donating group in these systems. Unfortunately, the longer wavelength probe, NDSTBPin, displayed a decrease in fluorescence intensity. Oxazole-based probe DAPOX-BPin produced a “turn-on” response. Regrettably, DAPOX-BPin required large concentrations of H2O2 (>3 mm) to produce noticeable changes in fluorescence intensity and, therefore, no change in fluorescence was observed in the cell imaging experiments.
AB - In this work, we synthesized a series of boronate ester fluorescence probes (E)-4,4,5,5-tetramethyl-2-(4-styrylphenyl)-1,3,2-dioxaborolane (STBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)aniline (DSTBPin), (E)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)benzonitrile (CSTBPin), (E)-2-(4-(4-methoxystyryl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (MSTBPin), (E)-N,N-dimethyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)styryl)naphthalen-1-amine (NDSTBPin), and N,N-dimethyl-4-(2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)oxazol-5-yl)aniline (DAPOX-BPin) for the detection of hydrogen peroxide (H2O2). DSTBPin and MSTBPin displayed an “Off–On” fluorescence response towards H2O2, owing to the loss of the intramolecular charge transfer (ICT) excited state. Whereas, CSTBPin displayed a decrease in fluorescence intensity in the presence of H2O2 owing to the introduction of an ICT excited state. STBPin, on the other hand, produced a small fluorescence decrease, indicating the importance of an electron-withdrawing or electron-donating group in these systems. Unfortunately, the longer wavelength probe, NDSTBPin, displayed a decrease in fluorescence intensity. Oxazole-based probe DAPOX-BPin produced a “turn-on” response. Regrettably, DAPOX-BPin required large concentrations of H2O2 (>3 mm) to produce noticeable changes in fluorescence intensity and, therefore, no change in fluorescence was observed in the cell imaging experiments.
KW - HO
KW - boronic acids
KW - diagnostics
KW - fluorescent probes
KW - intramolecular charge transfer (ICT)
UR - http://www.scopus.com/inward/record.url?scp=85041074134&partnerID=8YFLogxK
U2 - 10.1002/open.201700189
DO - 10.1002/open.201700189
M3 - Article
AN - SCOPUS:85041074134
SN - 2191-1363
VL - 7
SP - 262
EP - 265
JO - ChemistryOpen
JF - ChemistryOpen
IS - 3
ER -